About Madelyne Maag

Posts by Madelyne Maag:

Vivariums and The Hidden Metropolis Beneath Bond LSC


One of the researchers working under Bond Research Lab Manager, Raye Allen, observes one of the vivariums.

Bond LSC Facility Manager Dana Weir observes a family of rats in one of the vivariums. Photo by Raye Allen

By Madelyne Maag

You’ve heard of aquariums and terrariums, but probably not of a vivarium before. These enclosed structures take on a whole new meaning when science is brought into the picture.

And little do people know when they walk across the main floor of Bond LSC, they are walking above a city-like work space where the occupants work to improve our lives.

Vivariums functions as cubicles, condominiums and daycare centers for the rodents that live within them. The 10,000 square-foot lab at Bond LSC uses these transgenic rodents to study muscular dystrophy, diabetes, fertility, and oncology research, among other health research areas.

“These rodents are the living, working team that help us learn more about our health.” said Dana Weir, the facility manager from the Office of Animal Resources. “We want to make sure they are well taken care of so Raye Allen’s team works year-round to make sure they are monitored, well-fed, and comfortable in the vivariums.”

Raye Allen, the lab supervisor for Bond LSC’s vivarium, said cleanliness and care are the top priorities in addition to research. Cleaning, transporting, feeding the rodents all require a carefully detailed process.

The 1,700 clear polycarbonate containers are arranged in rows with single, coupled or a small family of rodents within them. Each shoebox-sized rodent condo, is provided with dry cushioned bedding, large quantities of food and water, as well as their own little hiding space. Clean, filtered air is also pumped through the back of their homes.

“These rodents live a cleaner life than you or I could ever imagine.” Weir said.

Each person who enters the lab must wear closed toe-shoes, two sets of nitrile gloves, a white floor-length, long-sleeved button up lab coat, a face mask and hairnet.

“Raye Allen’s team is mindful of everything they touch when handling the rodents or their homes in the lab. We spray everything with bleach to prevent any outside bacteria from contaminating the lab and only handle our rodents under the biosafety hoods present in each room.”

Several university, state and federal regulations ensure the safety and security of Bond LSC’s transgenic rodents. The National Research Council, USDA’s Animal Welfare Act, and University of Missouri’s Institutional Animal Care and Use Committee work together to monitor animal welfare and set standards for lab research on animals.

Weir carefully holds one of the rodents underneath a fume hood. Photo by Raye Allen

Weir carefully holds one of the rodents underneath a fume hood. Photo by Raye Allen

The Institutional Animal Care and Use Committee (IACUC) inspects Bond LSC’s vivarium every six months, in order to make sure that containment, handling and safety protocols followed by lab researchers are up-to-date. The IACUC also reviews the purpose of animals being used for each particular research project. A board of faculty members, veterinarians and two non-science community members review justification from lab researchers.

The safety and security of these rodents are the top priority of the researchers working in the labs, but there is also an emotional bond that is formed between them as well.

“Rodents are intelligent and emotional animals, so they learn who their caretakers are very quickly.” said Allen. “They recognize us by the smells we put off and get pretty excited when one of our researchers enters the room to interact with them.”

The researchers like Allen who work with these rodents on a daily basis, care deeply about the rodents as well as the work these furry critters do.

“The bond formed between the animals and their caretakers is equally as important as the research they help us do,” said Weir. “This goes for all of the animal research conducted in Bond as well as other research that is conducted across the Mizzou campus.”


Biosafety Breakdown: Understanding the safety precautions taken by labs working with viruses

Graduate student Yuleum Song prepares cells for viral infection in the BL-2 hood. | Image by Jennifer Lu, Bond LSC

Graduate student Yuleum Song prepares cells for viral infection in the BL-2 hood. | Image by Jennifer Lu, Bond LSC

By Madelyne Maag | Bond Life Sciences Center

Viruses can be nasty things and scientists have to take precautions.

You might think of researchers in floor-length lab coats, safety goggles, and plastic gloves or even the more extreme look of bulky, yellow hazmat suits similar to what Jim Hopper wear in Stranger Things. But, depending on the type of viruses being handled, these stereotypes aren’t quite the truth.

For labs like that of Marc Johnson in Bond LSC, safety comes from the incomplete nature of the HIV viruses they study. The viruses in Johnson’s lab are defective, meaning they cannot reproduce themselves. It doesn’t mean the virus is completely safe to handle. If it were to come into contact with another living being it would only infect the cells exposed to the virus and could not expand further. With defective strains of HIV, the virus can be grown at biosafety level two.

This level two is one of four levels of biosafety that are used to define how a lab might be physically set up and how its researchers are equipped in order to contain a virus. The levels act as more of a scale than a concrete definition of the lab since the type of virus being handled by a lab can vary.

Johnson, a professor of Molecular Microbiology and Immunology, says that his lab teeters between BSL-2 and BSL-3 depending on what type of virus they are working with.

“Our lab is classified as a BSL-2 (Biosafety Level 2) because we work with pathogens that have a low chance of spreading and a low chance of doing significant damage if they do spread,” said Dr. Johnson. “This simply means that our lab is shut off from anyone outside the lab who might try to come in outside of business hours. We also equip our staff with safety goggles, and gloves while they work with a virus under a Laminar Flow Hood to keep the air sterile.”

The major difference between levels like BSL-2 and BSL-3 often comes down to the type of virus being handled, whether it be something like HIV or a more lethal infection like SARS. The Laboratory for Infectious Disease Research is one of the only facilities on the MU campus, that can be classified as a level three. Because the lab handles airborne viruses, they take extra precautions to regulate air and waste coming out of the facility.

The highest level of biosafety can be identified as BSL4, which typically handles deadly viruses such as Ebola that could cause significant harm if it spread. This is where the terrifying and bulky hazmat suits come into play. The virus being handled in a BSL-4 lab comes with a high risk of researchers being infected if the proper steps are not taken to properly handle or contain the virus.

There are no BSL-4 laboratories in Columbia. In fact, one of the nearest labs won’t be opening its doors until 2022 in Manhattan, Kansas. These levels of safety are simply put in place to protect those who wish to study a virus and further medical research for the rest of the world.

The different levels of Biosafety might seem frightening to some, but there is nothing really to fear. These precautions are put in places just as signs that remind us to wash our hands after using the restroom. They are ways to prevent the contamination and spread of viruses and disease. MU Researchers don’t just have these precautions in place to protect everyone around them. They also have these precautions in place so that viruses like HIV can be better understood and treated by medical professionals around the world.

At halfway mark, Mizzou scientists look to quench thirst for understanding drought’s impact on corn roots


Shannon King, a Ph.D. candidate in Biochemistry from the Peck Lab in Bond LSC, gives instructions as faculty and students prepare for harvest. | photo by MJ Rogers, Roots in Drought Project

Shannon King, a Ph.D. candidate in Biochemistry from the Peck Lab in Bond LSC, gives instructions as faculty and students prepare to harvest root samples for later experiments. | photo by MJ Rogers, Roots in Drought Project

By Madelyne Maag | Bond Life Sciences Center

If you’ve ever sat down on a beach, then there is a good chance that you’ve stretched your fingers into the sand, like a plant spreading its roots underground. By sinking deeper into the sand, your fingers are bound to encounter cool, damp sand, where water is more abundant and available to nourish plant life above it.

It’s no secret that commonly known crops like corn need plenty of water to thrive, yet little is known about the massive network of roots that help this plant survive through periods of drought. In March 2016, the National Science Foundation awarded a grant to members of the University of Missouri’s Interdisciplinary Plant Group (IPG) to study corn’s nodal root system under drought conditions.

“One of the largest factors that affects yield in terms of environmental stresses is water limitation,” said Scott Peck, a plant biochemist at the Bond Life Sciences Center. “With the increasing global population and around 70% of water going to agricultural production, there simply won’t be enough water to sustain the global population that needs it. Therefore, we need to figure out a way to maintain crops with less water production.”

Peck is one of several faculty members working on this project that aims to be a first step in finding a solution for farmers when it comes to drought.

So what makes nodal roots so special? Bob Sharp, the project’s primary investigator, plant physiologist in the Division of Plant Sciences and Director of the IPG, explains that corn needs a significant amount of water to maintain growth. Nodal or crown roots, which can be seen growing out from the cornstalk and into the ground around it, provide the framework of the mature plant’s root system that collects most of the water it needs to thrive. The nodal roots grow to more than six feet into the ground to obtain water.

“Roots are a relatively unexplored part of the plant because they’re underground and difficult to study,” Sharp said. “Roots are also critical in the field because they are the part of the plant that directly experiences the drying soil environment, and can influence how the rest of the plant responds to drought.”

Joined by researchers from MU’s Division of Plant Sciences, Department of Biochemistry, Division of Biological Sciences, Department of Health Management and Informatics, School of Journalism and Bond LSC, Sharp is hopeful that they will be able to understand how the roots are able to continue to grow and survive under drought conditions.

As climate change shifts global weather patterns, droughts have hit various parts of the world more severely. Take 2012 in Missouri for example. By mid-July, all 114 counties had declared a state of emergency due to severe drought and suffered millions of dollars in crop loss.

Despite this being one of the most memorable droughts in recent years, these phenomena are not uncommon and certain crops, like corn, have developed a way to battle drought conditions underground.

From the start of the project in 2016, faculty and students have studied one season of growing and harvesting maize plants in the field, as well as using a novel controlled water deficit imposition system in the lab. In the field, Shannon King, a Ph.D. candidate in Biochemistry who is part of the team, is using a “drought simulator” to impose and maintain drought conditions during inclement weather. It works like a massive, open-ended greenhouse on train tracks. When it begins to rain, the simulator rolls over the cornfield being used for this project to keep water at bay. It is then removed once weather conditions improve.

The Drought Simulator, created by Ph.D. candidate Shannon King, acts as a giant mobile greenhouse. Whenever inclement weather moves in, the greenhouse moves on top of the crop field to protect it from any precipitation. Photo by MJ Rogers, Roots in Drought Project

The Drought Simulator, created by Ph.D. candidate Shannon King, acts as a giant mobile greenhouse. Whenever inclement weather moves in, the greenhouse moves on top of the crop field to protect it from any precipitation.
Photo by MJ Rogers, Roots in Drought Project

As the project approaches the halfway mark, the next steps will involve analyses of proteomics, metabolomics, transcriptomics and physiological data from nodal root samples in the lab and field. Once these studies are complete, the team will integrate the datasets using bioinformatics approaches to generate hypotheses on gene candidates and metabolic pathways involved in root growth maintenance under water deficit.

As a Broader Impacts activity of the project, Dr. Sharp and other members of the team will discuss their research at a workshop in the arid environment of northwest China. Here students, postdocs, and faculty will team up with Professor Shaozhong Kang of China Agricultural University to experience first-hand the problems and solutions of agricultural water-use efficiency near the Gobi Desert. The team will also present the importance of the project to the public, farmers, and legislators at the Missouri State Fair.

By understanding the way roots react under drought conditions in a controlled lab setting, in the field in Missouri, and in arid climatic zones across the globe, Sharp hopes that the findings of this project will help improve the ability of plants to find and use water and thereby lessen the global impact of drought on crop productivity.

This grant on “Physiological Genomics of Maize Nodal Root Growth under Drought” was awarded to Dr. Robert Sharp and colleagues at the University of Missouri on March 16, 2016. It is estimated to be completed on February 29, 2020

Piecing together plant immunity

Scott Peck-4620.jpgScott Peck studies Arabidopsis and how bacteria perceive it before initiating an infection. Roger Meissen/ Bond LSC

By Madelyne Maag | Bond Life Sciences Center

Bacteria and disease show no mercy to any organism they can effectively attack, including plants.

Yet, plants can also develop an immune response against these threats from their complex genetic makeup.

Scott Peck’s research delves into how plants do this and how bacteria evade those defenses.

Over the course of the last decade, the Bond Life Sciences Center investigator and professor of biochemistry has specifically looked into how plants are able to initially perceive and respond to potential bacterial threats through phosphorylated proteins and pathogen-associated molecular patterns.

“The overarching goal really with all of this research is to improve a plant’s resistance to potential pathogens in order to decrease crop loss,” Peck said. “That’s hundreds of millions of dollars lost every year to disease, so then that’s less food available and higher costs in the market.”

Peck recently published new work from his lab that observes how plants receive messages from potential pathogens and how they develop an immune response to these pathogens on a genetic level.

Similar to humans and animals, plants have a sensory immune response to know when a foreign object, such as a potentially infectious pathogen, shows up. One way they do that is by using receptors to detect certain molecules particular to an enemy like bacteria or viruses when they encounter the surface of a plant’s cells.

These pathogen-associated molecular patterns, or PAMPs, are recognized by the plant’s innate immune system and cause the plant to create a chemical defense against them. More specifically, when PAMPS are perceived, cells activate messenger proteins called mitogen-activated protein kinases (MAPKs), which signal the plant of a potential problem. Because too much defense signaling can be harmful, another protein, MAP kinase phosphatases (MKPs), helps the cell determine how much of a defense response the cell should make against the enemy.

To better understand the plant’s processes of recognition and response to a potential pathogen, two separate studies analyzed how MKP1 is regulated and which cellular pathways are regulated by MKP1.

“For one of the first times, these studies using MKP1 gives us a large, specific set of gene markers to define individual pathways that respond after perception of bacteria,” said Peck. “We can now specifically take individual genes and know how they work and where to place them like a Jigsaw puzzle.”

Both of these studies are able to help us better understand how one particular plant protein reacts to a potential threat.

Peck made it clear that proteins and responses are altered during defense responses.

The next step would be to better understand how these processes interact to help the plant defend itself against a variety of pathogens.

“By really understanding how the plant does what it does under the best circumstances, we can try to then, either through traditional breeding or engineering, get plants to grow and reproduce without being as vulnerable to pathogens,” Peck said.