Bond Life Science Investigator honored with two distinctions

DSC_1943.jpg

Chris Pires in his greenhouse in the Bond Life Sciences Center.

By: Samantha Kummerer, Bond LSC

“If you told me when I was an undergrad at Berkley or when I was working at a consulting firm in San Francisco when I was 22 that I would be a professor in Missouri working on broccoli, I would have laughed my ass off,” Bond Life Sciences investigator Chris Pires admitted.

But that work on broccoli has taken him far.

Pires recently received the 2017 Chancellor’s Award for Outstanding Faculty Research and Creative Activity in Biological Sciences.

Pires was also elected as a Fellow of the American Association for the Advancement of Science. The honor places Pires alongside other AAAS fellows including Thomas Edison and Margaret Mead as well as some of the most productive faculty members at MU.

The awards add to a long list of honors received over the years ranging from Thomas Reuters’ Highly Cited Researcher to MU Outstanding Research Mentor.

Despite being no stranger to awards, his impact still surprises him.

“For me what’s nice is people who I’ve had some impact on in the past say things,” he said smiling.

Both recent distinctions cite his contributions to plant evolution and sequencing of genomes and their impact towards improving crops and understanding biodiversity.

pires_award.jpg

Chris Pires, a Bond Life Sciences Center researcher, accepts an award from MU Chancellor Alexander Cartwright. Pires won the 2017 Chancellor’s Award for Outstanding Faculty Research and Creative Activity in Biological Sciences. | Photo by Kate Anderson.

While his work on polyploidy and hybridization on plants is internationally renowned and even earned a shout out on the television show “The Big Bang Theory”, the findings go right over the average person’s head.

So, instead, he compares his research to dogs.

Golden Retrievers and Chihuahuas don’t look alike but both are dogs. This is the same for broccoli, kale and cabbage — they are all are apart of the same genus of plants, Brassica.

Pires said he started using that analogy after years of getting the conversation wrong.

One of Pire’s passions is communicating the research he does, including clearing up misconceptions surrounding scientists and professors.

Some days he compares his lab and 80-hour workweek to the life of a small business owner running a multi-million dollar business. Other days it’s a football coach.

“I do all those things, you just don’t know it. I train people, I hire people, I fire people, I do communication, I spend a lot of times applying for grants, I give talks,” he said comparing duties of a coach to his everyday life.

He is also a talent scout.

Pires travels the world and visits MU undergraduate research fairs searching for students passionate about making a difference and are able to answer a simple question: Why?

“They just have to have an answer,” he said. “What I don’t want is the students where it’s just the next step in life.”

The passionate and devoted teams he builds pays off.

He has put out more than 140 publications during his career, 11 in 2017.

His success he attributes back to team science.

“I’m being recognized for stuff my lab does and all the people I collaborate with, so I’m happy to be acknowledged for the achievements of our group,” Pires said.

As the researcher looks on to his future at the university he said he hopes to transition from mentoring undergraduates to mentoring faculty and post-doctoral students.

Pires also wants to be a part of helping to foster cross-discipline research teams both inside Bond LSC and across campus.

While it’s not where he expected to he’d be, it’s where he found his passion. Now he is committed to helping his students get their dream job even if it changes along the way.

“A good day is when I go into the lab and I feel like I’m impacting the six or seven people in my lab but when you realize your impact has maybe been bigger than you realize, that’s nice because you just don’t know,” Pires said.

Chris Pires is a Bond Life Sciences’ Investigator and Biological Sciences professor at the University of Missouri. He is also a member of the Interdisciplinary Plant Group and MU Informatics Institute. He received his bachelors in biology at the University of California, Berkeley and his Ph. D. in Botany from the University of Wisconsin.

Madeline McFarland #IAmScience

MadelineMcFarland.jpg

Madeline McFarland, a senior biochemistry major, works in the Burke Lab in Bond LSC. | photo by Allison Scott, Bond LSC

Science isn’t limited to the lab. It’s more of a mindset than a discipline, and Madeline McFarland knows this all too well.

As a senior biochemistry major working in Donald Burke’s lab in Bond LSC, McFarland experiments with ribonucleic acid (RNA) to study the origin of life before DNA and protein served as genetic material and catalyst, respectively.

“I’m interested in the RNA World Hypothesis and how RNA may have played a role in getting life started on our planet,” McFarland said.

This hypothesis suggests early forms of life on Earth may have relied solely on RNA to store genetic information and to catalalyze, or spur, chemical reactions. The theory goes that DNA eventually evolved to take its place due to the instability and ineffectiveness of RNA.

In the lab, McFarland focuses on using a program called systematic evolution of ligands by exponential enrichment (SELEX), which filters the RNA so she can find which strands do what she’s looking for. Specifically, she’s trying to determine if the RNA can make a reaction happen. If McFarland can find this connection, scientists would see that as support for for the RNA World Hypothesis.

“I’m trying to see which RNAs can perform a catalytic function,” McFarland said. “By doing that, we can kind of start to think about how RNA used to function in early earth.”

Her typical day starts at 9 a.m. when she heads to Bond LSC to get her experiments set up for the day.

“I go to class while they’re incubating,” McFarland said. “My science allows me to set stuff up and have a break while it’s running. I’m usually running experiments four days a week.”

McFarland was inspired by the work being done in Bond LSC and the analytical way of thinking about experiments.

“[Research] is kind of nailed into you as soon as you step on campus,” McFarland said. “That was the motivating factor, but I came to love it for a lot of reasons. It’s really shaped the way I think about things.”

When she’s not wearing her lab coat and investigating the origins of life, McFarland spends her time working in environmental efforts at Mizzou.

“I’m really passionate about sustainability in all of its forms: environmental, economic and social,” McFarland said. “I lead the electronic waste drives around campus, and I’m co-directing sustainability week this year.”

McFarland is also a co-president of the biochemistry club.

“In our meetings, we bring in grad students and faculty to talk about career options, so everyone can ask questions,” McFarland said. “We also do fun events. Last night, we had a biochemistry-themed breakout room. They had to balance chemical equations and transcribe and translate a DNA sequence to spell out a word. We have a lot of fun with it.”

All of her work in the lab in combination with her research at Bond LSC has only strengthened her bid for her next endeavor: medical school.

“I’m passionate about communicating science, and I think medicine would allow me to do that,” McFarland said. “I like the idea of radiology because it allows you to look at an image, or data, then think through things on your own, which is a lot like research.”

If she doesn’t end up at medical school, McFarland would like to continue to pursue education. She could see herself attending graduate school.

“I’m interested in a master’s in public health,” McFarland said. “It would allow me to expand my knowledge of science and how it relates to health beyond the scope of the lab.”

Regardless of if she continues to learn through medical or graduate school, though, McFarland credits research for having an immense impact on her career.

“Research has really shaped the way I think about things,” McFarland said.

Inside agriculture’s hottest controversy: dicamba

DSC_1593.jpg

A soybean plant grows in the Bond Life Sciences Center’s greenhouse. | Photo by Samantha Kummerer, Bond LSC.

By Samantha Kummerer, Bond Life Sciences Center

Every summer, MU Bond Life scientists Gary and Bing Stacey plant soybeans. In the summer of 2016, they were testing mutant crops’ tolerance to different herbicides. Among the multiple weed killers tested was one called dicamba.

The researchers knew this particular chemical was tricky so they turned to an expert to apply it, MU herbicide researcher Kevin Bradley.

The next morning, a soybean breeder with a neighboring plot discovered his soybeans were damaged.

“These were plots where some of his graduate students experimented so they basically couldn’t use any of their data and we felt terrible, but we explained to them we took every precaution we could possibly take but it was this vaporization that took place,” Gary Stacey explained.

What Gary Stacey didn’t understand at the time was dicamba has an ability to travel even after it is sprayed. The herbicide doesn’t just kill weeds, it kills or damages everything not engineered to be resistant to it.

“So let’s say I spray it in this spot right here. You would think its localized but if the temperature and humidity conditions are right it will vaporize and come up and then go into the air,” Gary Stacey said.

Just how far it can travel and how much damage it can achieve was realized all too well by farmers throughout the country this year.

An estimated 3.5 million acres of soybeans were damaged this summer.

One obvious solution may be to simply stop using the weed killer. But the issue is not that simple.

“This is the hardest issue I can remember because there are good responsible farmers on either side of the issue,” said Missouri Farm Bureau president Blake Hurst.

With so much on the line for all sides, dicamba has tangled farmers, corporations and researchers together in a controversial issue.

Bradley is right in the middle. He’s received calls from farmers who just lost 10 percent of their income for nothing they did wrong.

He’s also received calls from people who are upset by any suggestion that anything about the chemical is wrong. These are the farmers who need dicamba to control weeds that are no longer responding to the traditional weed killer Roundup.

“I’ve had the farmers who planted the traits saying ‘These are my highest yields ever how can you say these things?’ And their neighbor across the road just lost 20 bushels an acre because of your highest yields ever. It’s just a very personal issue for each person involved,” Bradley explained.

One case got so personal that a farmer in Arkansas allegedly shot his neighbor.

“I’ve been here for 14 years and I’ve been doing this kind of work for 20, never seen anything like this is agriculture. Period. Never seen this level of controversy between farmer to farmer and farmer to company or between company and university people. I’ve never seen anything like this,” Bradley said.

Dicamba is not a new formulation, but its use is. Monsanto developed genetically modified soybeans and cotton seeds that are resistant to dicamba. One of the problems farmers are pointing to is that Monsanto released the new seeds while still in the process of developing a better formula of dicamba. The new formula aimed to reduce volatilization, a tendency to vaporize after being sprayed on fields and then drift to neighboring areas. Monsanto claims the new formula reduces volatility by 90 percent, but Bradley said 90 percent is not 100 percent.

Bradley’s work has been consumed by this single herbicide as he tries to find the truth of what aspect of dicamba is causing the damage.

In Bradley’s eyes, there are four factors contributing to the widespread damage: physical drift mistakes (spraying with the wind, nozzle not attached correctly), tank contamination, temperature inversion, and volatility.

These factors are recognized by other researchers and Monsanto. The disagreement is over which factor is most at fault.

“Monsanto has a pretty high number for the farmer fault percentage,” Bradley said explaining the blame game. “ I don’t know when they’ll ever really say, ‘yeah, volatility could be contributing to this problem, too’ and that’s the difference between university weed science.”

This contributes to the confusion among users.

“You don’t know who to believe,” Gary Stacey said.

But Gary Stacey thinks this is where researchers are able to help. By acting as an objective third party, scientists can sort the fact from the fiction.

“We’re just trying to get out the truth and what science says, that’s my job,” Bradley explained. “I don’t care necessarily what amount of money a company has invested in something. Our job is to call it like we see it and show the science.”

With a controversial issue like this, sometimes the truth comes with some risk.

MU has been conducting experiments that test the air for the volatility of the chemical. The research is detecting dicamba in the air up to four days after initial application of the chemical. Bradley explained this is not something the companies want to be made public and there’s been considerable pushback.

In addition to research, Bradley is working with the Missouri Department of Agriculture to create training courses for farmers wanting to use the chemical next season.

Despite millions of damaged acres, dicamba is not going away anytime soon.

Gary and Bing Stacey haven’t used dicamba again, but many farmers making their money off crops have no choice. Bradley said Monsanto is planning on doubling the amount of dicamba-resistant soybeans in 2018 and many of the farmers who have been continuously hit by their neighbors’ chemical plan to plant the new seeds.

Bradley said part of the issue is soybeans are not a crop people directly consume. In general, soybeans yields were considerably high this year, so the damaged acres didn’t make as big of an impact on overall production.

“I think the only thing that is going to make a difference next year is if we have an off-target movement that is hitting more high-value crops, more high-value plant species throughout a wider geography,” Bradley said.

If this same type of damage was affecting produce people directly consume or trees, Bradley thinks dicamba would have been off the market by now.

EPA will reevaluate the use of the herbicide next November. This is one of the first times Bradley can remember that the industry granted only a two-year registration.

“I am absolutely convinced that if we have a summer in 2018 like we had in 2017, it will not be renewed,” Hurst said.

Bradley is not so certain. He said he has heard mixed reviews about how the future of this controversial weed killer could go.

“It is an unique situation for sure, hopefully it ends soon,” Bradley said.

German heart and lung researcher speaks at Bond LSC

DSC_3876.jpg

Scientist Thomas Braun speaks at Bond LSC about skeletal muscle regeneration. Braun is the director of the Max-Planck Institute that studies the heart,lungs and blood vessels.| Photo by Samantha Kummerer, Bond LSC

By: Samantha Kummerer, Bond LSC

Thomas Braun, a researcher with the German-based Max Planck Institute for Heart and Lung Research, visited MU for a Bond Life Sciences and Mizzou Advantage seminar.

The Max Planck Institute aims to find treatment for heart and lung disease. Part of its research focuses on stem cells and how they can decrease damage done to patients’ tissues who suffer from heart or lung disease.

Many components can interfere with effective muscle regeneration and a lot of those this components are connected to cell death.

Braun’s talk focused on the epigenetic and transcriptional control involved in skeletal muscle regeneration. His research explores cell death’s effect on muscle regeneration. They initially hypothesized that cell death would interfere with regeneration.

Muscle regeneration requires satellite cells. Satellite cells, aptly named for being located near muscle and nerve cells, help skeletal muscle fibers grow, repair and regenerate.

When cells become obsolete they activate a cell program to commit suicide. This cell death comes in the form of apoptosis — normal programmed cell death triggered to eliminate old, unnecessary or unhealthy cells — and necroptosis that is a death by inflammation to counter viruses and other disease.

Braun said when muscle fibers break down there is lots of killing of cells.

“We wanted to see if we take the muscle stem cells out of the tissue and put them into a dish whether they would still maintain this increased function to undergo program cell death and quite interestingly this enhanced tendency to go into cell death is actually maintained even after a few different transitions in vitro,” Braun said describing a particular experiment.

This increase cell death, Braun hypothesized, is caused by changes in the chromatin, a complex of DNA and protein.

To better understand exactly which cell death program was responsible for this increase, Braun’s team repeated the experiment but block certain components. This led them to discover the increased cell death correlates with an increase in necrosis.

Braun also believes there are some epigenetic mechanisms involved. Epigenetic involves biological mechanisms that switch genes on and off.

CDH4 is a component of a complex within this epigenetic function. The larger complex is a repressor and keeps the chromatin together. The researchers thought CHD4 might be what is acting on the pathways

“This actually goes along with a massive increase in cell death so this lack of proliferation of the fiber is simply dependent or caused by the cell death of these satellite cells. They undergo cell death and therefore cannot proliferate,” Braun explained.

Braun said his team landed on the conclusion that normally CDH4 represses the expression of

RIBK3, a protein-coding gene, and thus prevents necrosis cell death. But without CHH4, necrosis begins, cells die.

There are still many questions and experiments that lie ahead to figure out the details involved.

Braun’s talk was made possible by the support of Mizzou Advantage and Bond LSC.

 

Makenzie Mabry #IAmScience

Makenzie.jpg

Makenzie Mabry, a Ph.D. candidate, works in the Pires Lab in Bond LSC. | photo by Allison Scott, Bond LSC

For Makenzie Mabry, every day is a new puzzle when it comes to science.

That desire to solve new problems led her from wanting to be a veterinarian to considering much less cuddly focus in plants.

“I think the beautiful thing about research is that it evolves itself,” Mabry said.

Although she had an acceptance letter to vet school in tow, she altered her career path to work with a new passion: plants. That led her from California to the lab of Chris Pires at Bond LSC.

“I did all of my undergraduate studies [at San Diego State University] with a vet school plan,” Mabry said. “I took a class my senior year talking about plants — Taxonomy of California Plants — with a great professor [Dr. Michael Simpson], and he really sold me on how unique plants are. They break all the rules.”

With vet school no longer in her plans, Mabry volunteered to work with Dr. Simpson and learn as much about plants as she could.

“I was all ready for vet school and I emailed him a week after I was supposed to start to volunteer,” Mabry said.

After two years of volunteering, Mabry began working toward a master’s degree. During that time, she studied a plant native to her home state of California, Cryptantha. She also studied those which occur in Chile and Argentina by visiting both countries.

“That fueled my passion for research,” Mabry said.

However, it wasn’t until five years ago that Mabry met Chris Pires at a conference in Columbus, Ohio.

“He was very energetic and I had just started learning about polyploidy [which Pires studies]. Three years later, he somehow convinced me to move from California to Missouri,” Mabry said. “I really enjoy the work I’m doing here, and it was a good decision.”

Now as a third year in Pires’ lab at Bond LSC, Mabry uses Brassicales — a family of plants that range from papaya to Brussel sprouts — to explore the multiple genomes of plants. She enjoys her lab work, analyzing data and getting to know the plants.

“Learning the subtle differences between them — whether branches are really close together or their leaves are clustered — is key,” Mabry said. “Being able to account for those differences might mean a lot for being able to find genes that are responsible for them. You have to know what those differences are to know what genes are responsible for it.”

Specifically, Mabry tries to understand how polyploidy — when an organism duplicates their genome to end up with two or more sets of chromosomes — comes about and what impact it has on plant species.

“We want to prove that polyploidy can lead to adaptive variation,” Mabry said. “It can be two different species forming a hybrid, and they keep all of their chromosomes, or a single species that doesn’t go through reduction. That’s the major question our lab is focusing on.”

These extra chromosomes can potentially give a plant new traits that help them react better to the environment or reproduce better without compromising essential plant functions. There are complexities to polyploidy that make deciphering its existence difficult, though. For instance, they’re trying to uncover why certain genes are kept and others aren’t.

“There’s evidence that there’s one genome that’s dominant to the other,” Mabry said. “Polyploids have a larger gene size, so that helps them accommodate.”

And, as a result, Mabry’s research requires coding skills.

“If you want to be successful you need to know how to code. You at least need to know what data is put in and what comes out,” Mabry said. “In the next 10 years, I think it’s going to be even more of a part of the undergraduate curriculum – it’s going to have to be.”

Luckily, Mabry doesn’t work alone.

“I’m really grateful because I have four amazing undergrad students who work with me,” Mabry said. “I could not do it without them. They all have individual projects that they are responsible for and it is very rewarding to watch them succeed in writing grants, presenting their work, and getting results.”

Ultimately, though, the undergraduates she works with are a big reason why she envisions herself in academia.

“Mentoring — that’s what keeps me going every day,” Mabry said.