Events and speakers

Old friends, new ideas

A partnership between MU and Gyeongsang National University in South Korea has created lasting connections

By Eleanor Hasenbeck | Bond Life Sciences Center

DSC_9853.jpg

Discussion went global this week as researchers converged from Gyeongsang National University in South Korea, MU and Washington University at Bond Life Sciences Center for the sixth MU-GNU International Joint Symposium in Plant Biotechnology.

Plant biologists from each university shared their research, ranging from molecular biology and signaling to breeding soybeans for improved yields. The symposium is held every two years, alternating locations between the U.S. and South Korea. This conference marks the eleventh year of collaboration between GNU and MU.

“Every trip that comes over, new collaborations develop,” said Gary Stacey, a Bond LSC scientist of soybean biotechnology and chair of the symposium’s local organizing committee. “Just at dinner the other night, you could hear people talking and saying ‘We should do that together.’ You get people together and they collide, and good things come from that. The whole idea of these symposiums is try to increase those collisions.”

As those involved share new research and ideas, these collaborations create opportunities. A former student in Stacey’s lab recently received a doctoral degree from both universities as part of a joint-doctoral degree program. Undergraduate Korean students can also complete a “2+2” degree, where students can begin their studies with two years at GNU and finish with two years at MU.

The schools also exchange faculty members. GNU researchers Jong Chan Hong and Woo Sik Chung completed sabbaticals at MU. Stacey has spent time in Korea, and his lab receives funding from Korean grants.

“Getting our students to interact with Korean students and Korean faculty expands their horizons, gets them in contact with other cultures and is really part of creating an intellectual environment where students can grow,” Stacey said.

For Stacey, the symposium has also brought valued friendships. “After you’ve been over there, and you know these guys for eleven years, it’s like your cousin coming home,” he said. “You’re not a visitor anymore. You’re like part of the family.”

For more information about the science exchanged, visit http://staceylab.missouri.edu/symposium.

From neuroscience to negotiations

Neuroscientist and former Secretary of State science adviser to speak at Life Sciences Week
By Eleanor C. Hasenbeck | Bond Life Sciences

Frances Colon

Frances Colón has spent the past decade representing the United States all over the world on topics ranging from climate change to the advancement of women scientists. She will reflect on that experience in her talk at 3:30 p.m. Monday, April 11 in Monsanto Auditorium. | Photo courtesy of Frances Colón

A career in science doesn’t only mean working in a lab, and no one knows that better than Frances Colón.

Colón, a neuroscientist by training and policy maker by trade, will speak about how scientists can become more involved in policy without abandoning the laboratory bench.

During her Missouri Life Sciences Week lecture “My path to science citizenship,” Colón will talk about her transition from the lab to policy. She’ll speak 3:30 p.m. Monday, April 10, in Monsanto Auditorium.

“I think scientists need to realize that they have a broader set of skills than they give themselves credit for that can be applied to the service of the community and their country in many different ways,” said Colón. “I think we’re living in a time where our country needs scientists to get engaged at every level. That doesn’t mean they need to leave a career in academia to go into policy, but it could certainly mean involvement everywhere from the community level to the national level.”

After receiving a doctoral degree in neuroscience and studying how nerve cells mature at Brandeis University, Colón first got involved in making policy as an American Association for the Advancement of Sciences policy fellow. She then served as science and environment adviser for western hemisphere affairs for more than three years before she became deputy science and technology adviser to the Secretary of State, a position she served in until January.

As deputy science adviser, she led efforts to reengage Cuba in scientific collaboration after U.S. policy regarding Cuba shifted. She also coordinated climate change policy for the Energy and Climate Partnership of the Americas, and she worked to advance women and girls in science, technology, engineering and math. Today, she looks to use platforms outside of the government to accomplish the same missions.

Colón said of her career thus far, she is most proud of the work she’s done to educate women in opportunities in STEM careers.

“A lot of these countries started to realize that they can’t tackle a lot of the biggest challenges they’re confronting, from climate change to energy security, without having all of their best talent at the table. That required providing equal opportunity for women and men to achieve these positions,” Colón said. “We worked a lot on finding opportunities for girls to discover STEM careers and to help countries plan out what their STEM capacity building activities could be.”

These activities included things like the two-week camps for girls in South America and Africa, where they learned about coding and genetics with help from corporate partners.

Colón holds a doctorate from Brandeis University, and a bachelor’s degree in biology from the University of Puerto Rico. She was a delegate to the National Committee on U.S.-China Relations’ Young Leaders Forum, and a graduate of the National Hispana Leadership Institute. Last year, she was named one of the 20 most influential Latinos in technology by CNET en Español.

Colón will speak at 3:30 Monday, April 10 in Monsanto Auditorium as part of Missouri Life Sciences Week.

National Cancer Institute researcher to speak at Life Sciences Week

By Jinghong Chen | Bond Life Sciences Center

“Living things are too beautiful for there not to be a mathematics that describes them.”

Thomas D. Schneider will speak Tuesday, April 11 in Bond LSC’s Monsanto Auditorium. | Photo by National Institutes of Health

Thomas D. Schneider will speak Tuesday, April 11 in Bond LSC’s Monsanto Auditorium. | Photo by National Institutes of Health

This is Thomas Schneider’s motto.

Schneider, a research biologist at the National Cancer Institute, spent most of his career understanding math and its relation with fundamental biology. His lab focuses on the DNA and RNA patterns that characterize genetic control systems; they invented the widely-used sequence logos.

“In the first place, I am doing this because I am curious,” Schneider said. “Let’s go find the math and who knows what would come out of that.”

Schneider will speak during the 33rd annual Missouri Life Sciences Week, a celebration of MU’s science research and collaboration across disciplines.

Claude Shannon’s information theory lays the foundation of Schneider’s study. In the landmark paper published in 1948, Shannon defined the quantity of information and how it transmits amid interference of noise. When people communicate via a phone call, the heat of the telephone line is one type of noise. As noise contaminates information, the highest rate at which information can be reliably transmitted over a noisy communication channel is defined as the channel capacity.

A similar concept emerges in Schneider’s Molecular Information Theory. It leads to a theoretical measure of the efficiency of molecules.

“I thought [Shannon’s] theory was screaming as I dragged it into biology. The stunning thing is that it fits biology really, really well,” Schneider said.

He looked at the DNA binding protein EcoRI, a restriction enzyme that binds DNA. When it binds, there is an inequality relationship between information and the information gained for the dissipated energy. The efficiency of DNA binding sites on nucleic acids is about 70 percent.

This mysterious number has appeared widely in his research and it also describes ecological evenness. In an even ecosystem with all species being equally represented, the evenness is close to 100 percent, but when only one species dominates the environment, its evenness dwindles to 0 percent.

Schneider found that fish species diversity in a Georgia estuary is near 70 percent and the evenness of plant species in different divisions of 8-square-meter plots in California is also around 70 percent.

When Schneider turns from ecological system to biological systems, this number still stands out. Caenorhabditis elegans (C. elegans), a free-living tiny worm, has been extensively studied and has had its entire cell lineage traced. On the basis of previous studies, Schneider calculated the efficiency of its lineage and found that the number fits the ubiquitous 70 percent, when excluding the dead cells of a C. elegans.

With this established case, one of his colleagues suggested looking into one of human’s biggest enemy – cancer. Cancer occurs when a cell develops mutations and grows out of control. Schneider hypothesized that if you have more of a certain type of cell, then you have a larger chance for that cell type to get a mutation that might lead to cancer.

The International Agency for Research on Cancer (IARC) publishes a report on all different types of cancers observed each five or six years. Based on the data collected by IARC and the hypothesis, Schneider found that for adults whose ages are above 14 years old, the cancer type evenness always remains around 70 percent.

“The thing that is interesting is that when you understand things fundamentally, it inevitably leads to practical results,” Schneider said.

Schneider’s speech on “Three Principles of Biological States: Ecology and Cancer” will be held at 1:15 p.m. April 11 in the Monsanto Auditorium at Bond Life Sciences Center.

Missouri Life Sciences Week is a university-wide event that brings together research across scientific disciplines at Mizzou. This year will highlight more than 300 student, faculty and staff research presentations and four topical lectures by accomplished researchers in addition to career development workshops and scientific service and supply exhibits.

Check out the full schedule of events here.

 

Hanson to explain why broken metabolites matter at Life Sciences Week

By Jinghong Chen | Bond Life Sciences Center

Andrew Hanson, right, will speak Friday, April 14 in Bond LSC's Monsanto Auditorium as the 2017 Dr. Charles W Gehrke speaker. | Photo by University of Florida, Institute of Food and Agricultural Sciences

Andrew Hanson, right, will speak Friday, April 14 in Bond LSC’s Monsanto Auditorium as the 2017 Dr. Charles W Gehrke speaker. | Photo by University of Florida, Institute of Food and Agricultural Sciences

People often think of metabolism as a perfect network. But that assumption is simply not accurate.

Andrew Hanson, an eminent scholar and professor at the University of Florida, describes the misunderstanding as “the power of a paradigm.” American biochemist Albert Lehninger spread the misunderstanding in his classic textbook “Biochemistry”, in which the message he communicated to generations of students was: metabolism is a beautiful machine that functions flawlessly.

Hanson challenges this “metabolism is perfect” paradigm using illustrations from different kinds of organisms in his lecture. He will speak in Bond LSC’s Monsanto Auditorium at 1 p.m. Friday April 14, during the 33rd annual Missouri Life Sciences Week.

For every living organism, metabolism is the sum of every chemical reaction that occurs to maintain life. This sum contains all the metabolites — small molecules created at each level of cell processes and final products — that share a part in the growth, development, reproduction and running of cells and whole organisms.

However, enzymes can make mistakes; many chemical compounds in cells are unstable and undergo spontaneous reactions. The consequences of enzyme errors and chemical side-reactions are, at best, unwanted and sometimes toxic, so organisms have developed mechanisms – damage-control systems – to deal with the consequences of damage.

Hanson’s lab has studied metabolite damage and the damage-control systems that plants and microorganisms employ to cope. But the impact of metabolic problems also reaches into the human domain, causing disease from failure or mutation of damage repair enzymes. “It matters in aging humans and animals a great deal, because aging is the result of cumulative damage,” Hanson said.

Plants are also afflicted by metabolite damage. Under environmental stress such as high temperature or water loss, the error rate of enzymes and rates of unwanted chemical reactions can go up.

The understanding of metabolite damage could also advance metabolic engineering, which is a purposeful manipulation by combining metabolic pathways and DNA techniques to produce desired products. After creating new pathways in an organism, it may fail to cope with the abnormal reactions produced by the new pathways. To fix the problem, the only solution might be to install the required damage control enzymes.

Hanson’s lab hopes to identify new or unsuspected damage reactions, and enzymes that repair or prevent damage. They also are working to connect with metabolic engineering groups that install modified pathways in plants and microbes to study sources of damage and propose solutions.

Metabolism is not perfect. However, after studying its imperfection for years, Hanson concluded, “life is put together in a very beautiful and even more powerful way than we first realize. It makes a lot of mistakes, but it also fixes them so well that we do not even notice them.”

Hanson’s lecture on “Fixing or safely trashing broken metabolites and why it matters” is this year’s Charles W. Gehrke distinguished lecture. Gehrke, a longtime MU professor of Biochemistry, was selected by NASA to analyze rocks retrieved from the first moon landing for any traces of extraterrestrial life. He died in 2009.

Hanson’s lecture is free and open to the public as part of Missouri Life Sciences Week. It occurs at 1:00 on Friday, April 14 in Bond LSC’s Monsanto Auditorium. See more about events during the week at bondlsc.missouri.edu/life-sciences-week.

Harvard researcher to speak at Life Sciences Week

Jessica Whited studies the genetics behind how salamanders grow severed limbs

By Eleanor Hasenbeck | Bond LSC

axolotl Ruben

An axolotl rests at the bottom of its tank at Menagerie du Jardin des Plantes in Paris. | photo by Jack Baker, Flickr

It takes about two months for an axolotl to regenerate a lost limb. Humans, as you probably know, don’t regenerate limbs.

But, a basic understanding of how the Mexican salamander regrows limbs advance regenerative medicine in humans according to Jessica Whited, a researcher at Brigham Women’s Hospital and assistant professor at Harvard Medical School.

Whited will speak at 3:30 p.m., Thursday April 13, in Monsanto Auditorium as part of Missouri Life Sciences Week at Bond Life Science Center. Her lecture, “Identifying roadblocks to regeneration in axolotl salamanders” will present the lab’s discoveries and evidence that a specific gene in axolotls can block the animal’s ability to regenerate.

Whited’s lab found axolotls can exhaust their ability to regenerate. When a limb is severed repeatedly, the salamander stops producing blastemas, the mass of cells capable of regeneration that allow the limb to grow back. This could be due to a dysregulated gene blocking the animal’s ability to produce them.

The Whited Lab sequenced the mRNA in axolotls that could regenerate limbs and that could no longer regenerate. They found 912 genes that differed between the two groups. Whited will discuss one of these genes, which her lab considers a potential inhibitor to regeneration.

“It’s much more common for people to think “Oh, what are the things that promote limb regeneration?’ than it is to think about the things that we might have to block to make it happen,” Whited said. “This project has the potential to uncover the roadblocks, which could turn out to be equally critical.”

An MU alumna, Whited received the National Institutes of Health New Innovator Award in 2015 for her work with this unique regenerative salamander. She earned a PhD in biology at the Massachusetts Institute of Technology, and two undergraduate degrees in biological sciences and philosophy at MU.

Whited attended MU as a Bright Flight and Curator’s Scholar. And though it happened nearly 20 years ago, she said receiving those two scholarships were among the most important things that happened in her career. As a high school student, she knew she would go to college, but financially, she didn’t know how it would happen. She also credits her education and undergraduate research experience at MU for preparing her to think at the research bench.

“You have to get an undergraduate education, and it totally prepared me even for graduate school at MIT, which is one of the top programs in the world, in many subjects, but in biology especially,” Whited said. “The idea that you could find a career where you’re using your brain as your primary asset, I figured that out while I was at the University of Missouri, because there were people, our professors, doing that.”

Whited’s lecture is free and open to the public as part of Missouri Life Sciences Week. It occurs at 3:30 on Thursday, April 13 in Bond LSC’s Monsanto Auditorium. See more about events during the week at bondlsc.missouri.edu/life-sciences-week.

Beginning of a journey

By Jinghong Chen | Bond Life Sciences Center

DSC_8812.jpg

Emily Million, a prospective biochemistry graduate student from Truman State University and Kevin Muñoz-Forti of University of Puerto Rico’s Pontifical Catholic University talk at the Graduate Life Sciences Joint Recruitment Weekend on February 4 after looking at posters about many different research programs and projects. | Roger Meissen, Bond LSC

Nick Dietz was not certain where to start his research journey this time last year.

But the atmosphere during a recruitment weekend nearly a year ago convinced him to pick MU over three other offers of admission. He is now a first-year plant sciences Ph.D. graduate student and life sciences fellow at MU.

“It is crucially important for [prospective] graduate students to feel they are going to feel like home, and Mizzou just knocked out that part with the recruitment weekend,” said Dietz.

The Graduate Life Sciences Joint Recruitment Weekend, an annual event since 2010, builds a two-way street between MU faculties and prospective graduate students and helps them to determine whether MU is the place for them to continue their education.

This year, about 35 prospective students with different academic backgrounds participated in the recruitment event.

“Up to this point, the departments only know these [prospective] students on paper,” said Debbie Allen, coordinator of Graduate Initiatives. “But this is an chance for the faculty and staff to meet them in person to get a feel that whether they are going to be a good fit for our program.”

Conversely, the prospective students also gain deeper understanding of MU via tours around the campus and the laboratories, one-on-one interviews with potential advisors and interdisciplinary poster sessions. The event combines recruiting efforts from the division of Biochemistry, Plant Sciences, Molecular Pathogenesis and Therapeutics graduate program, Genetics Area program, MU Information Institute, the Interdisciplinary Plant Group and Life Sciences Fellowship Program.

More than 100 faculty, graduate students and post-doctoral fellows joined the recruitment weekend. They play a valuable role in interacting with the prospective students, as they are the ones who are in the midst of MU life.

DSC_8833.jpg

Nick Dietz, a freshman plant sciences graduate student, volunteered as a student ambassador during the the annual Graduate Life Sciences Joint Recruitment Weekend Saturday, Feb. 4. Dietz said last year’s event clinched his decision to attend MU and made him want to help prospective students make their decisions on where to attend. | photo by Roger Meissen, Bond LSC

Dietz joined that effort as a student ambassador. He toured Matthew Murphy, an Illinois College graduate, around the campus and shuttled him to different interviews.

Murphy drove from St. Louis for the recruitment weekend. With a major in biology and a minor in mathematics, he wishes to submerge himself into plant sciences.

During his gap year at the Donald Danforth Plant Science Center after graduation, Murphy learned about the division of Plant Sciences, which is one of the MU’s strongest programs. That eventually got him pumped up to apply for MU.

The recruitment weekend energized him further.

“Every graduate student I have talked to is really helpful and honest,” said Murphy. “They are all saying… how thankful they are to pick Mizzou.”

DSC_8845.jpg

Lloyd Sumner, professor of biochemistry and director of MU’s Metabolomics Center in Bond LSC, talks with a prospective graduate student Saturday, Feb. 4, during the annual Graduate Life Sciences Joint Recruitment Weekend. | photo by Roger Meissen, Bond LSC

Lloyd Sumner, an MU professor of biochemistry, is expecting new students to join his lab. He had lunch and one-on-one meetings with the 11 prospective students invited by the biochemistry department, and toured them around his lab to showcase the instrumental resources.

“These are educated young adults with often very grand ideas. It is inspiring to visit with them and to be part of their future goals and careers,” Sumner said.

After six months rotating between different labs, Dietz has not yet decided which research route he will take yet. Nevertheless, he remains certain of one thing: he is enjoying the life here.

“It is a really warm atmosphere,” said Dietz. “I don’t feel I am being used as a labor. Professors actually want me to do well and get a good education.”

A plant remedy

MU Center for Agroforestry symposium talks medicinal plants
By Jinghong Chen | Bond LSC

Agroforestry.jpg

Rob Riedel from Wild Ozark Ginseng Farm introduces their products at the agroforestry symposium on Jan. 26th, 2017 | photo by Jinghong Chen, Bond LSC

Researchers, landowners and entrepreneurs converged at Bond Life Sciences Center to discuss current developments and topics in medicinal plants and agroforestry at the eighth UMCA Agroforestry Symposium. This daylong annual event, hosted by the Center for Agroforestry, took place on Thursday, Jan. 26.

People have been using medicinal plants as natural remedies and medicines for thousands of years all over the world. The global market of medicinal plants industry is huge.

“It is going to approach nearly $115 billion by 2020,” said Dr. Shibu Jose, director of MU Center for Agroforestry.

The university practices research projects on how to grow medicinal plants in a sustainable manner and how to harvest and process them, according to Dr. Jose.

Agroforestry keynote speaker.jpg

Keynote speaker Tom Newmark talks about medicinal plants at the agroforestry symposium on Jan. 26th, 2017 | photo by Jinghong Chen, Bond LSC

Tim Newmark of the American Botanical Council said climate change and the loss of soil are two main threats to herb plants. His keynote speech is on how to use regenerative practices in medicinal plants and agroforestry to positively impact the environment. A recent White House report wrote that without cooperated actions, the United of States will run out of the topsoil by the end of this century.

“We are eating our environment,” said Newmark.

Four main destructive forces leading to the dramatic loss of soil are excessive tilling, monoculture, synthetic nitrogen fertilization and pesticides.

Newmark did a side-by-side test in his farm in Costa Rica during the worst drought in the country. He implanted cassava in two fields under identical conditions and applied the best practice of conventional agrochemical agriculture and regenerative practice, respectively.

When the drought happened with six weeks of no rain in the rainforest, only the crop in conventional field was a complete failure.

Newmark said the next trend in the plants industry is agriculture focusing on regenerative plant soil.

Seven other speakers also presented on medicinal plants and included:

Dr. Jim Chamberlain, from US Forest Service, on forest management and medicinal plants

Dr. Susan Leopold, from United Plant Savers, on the conservation of medicinal plants

Dr. Jed W. Fahey, from Johns Hopkins University, on researches on moringa oleifera

Dr. Lloyd Sumner, from the University of Missouri, on the metabolomics opportunities and application in pecan

Dr. Chung-Ho Lin, from the University of Missouri, on how to identify value-added compounds from waste plant materials

Dr. Bill Folk, from University of Missouri, on International partnerships in medicinal plants

Steven Foster, an author and photographer, on field guide on medicinal plants and herbs

The agroforestry symposium is held annually with different themes. It has focused on climate change and pollinators, previously.

Read more here about the Agroforestry Symposium on the Center for Agroforestry website.

Mizzou Epigenetics 2016

Five faculty speakers from five different universities, along with two trainees selected based on the merits of their poster abstracts, presented on current topics in epigenetics. The daylong symposium, titled Mizzou Epigenetics, took place on Wednesday, Nov. 9 at the Bond Life Sciences Center.

DSC_2300.jpg

Kenote speaker Dr. Jean-Pierre Issa talks about epigentic drift at the epigenetics symposium on Nov. 9th, 2016 | photo by Jen Lu, Bond LSC

Dr. Jean-Pierre Issa of Temple University, the keynote speaker, said he was a stickler for the definition of classical epigenetics: stable, long-term changes in gene expression. Textbook examples of epigenetics include X-inactivation, an irreversible process that happens at the beginning of gestation, and imprinting, where certain genes are not expressed based on their parental origins.

DNA methylation is one mechanism that cells use to control whether genes are activated. The presence of methyl tags—single carbons bonded to three hydrogen atoms—act like “off” switches when attached to a region of the gene called the promoter.

Enzymes that add or remove tags are normally busiest during the embryonic development. Cancer is the exception to the rule. According to Issa, cancer presents a “chaotic picture” where methyl tags get added to regions where they don’t belong, and removed from regions where they ought to be, resulting in epigenetic shift.

The greater the epigenetic shift, it seems, the greater the age of the cell. Regardless of whether you look at mice, monkeys or humans, Issa said, from a methylation perspective, “cancers look like very very very old cells.”

He also drew connections between epigenetic shift and other conditions related to aging. For example, specimens with chronic inflammation, infection or the introduction of a new microbiome to a germ-free body tended to show a higher than average amount of epigenetic shift as their cells age. Meanwhile, mice and monkeys who were exposed to calorie restriction tended to have lower amounts of epigenetic shift over time.

DSC_2307.jpg

Poster session from the epigenetics symposium held Nov. 9th, 2016 | photo by Jen Lu, Bond LSC

Other speakers who presented on epigenetics included:

  • Dr. Rick Pilsner, from the University of Massachusetts, on how paternal exposure to plasticizers affect sperm DNA methylation
  • Dr. Bob Schmitz, from the University of Georgia, on the identification of mechanisms behind spontaneous epigenetics variation
  • Dr. Zohreh Talebizadeh, from Children’s Mercy Hospital, on the genetics of autism
  • Dr. Andrew Yoo, from Washington University, on microRNA-mediated changes in chromatin during neuronal reprogramming of human fibroblasts

The event was sponsored by Mizzou Advantage, the School of Medicine, the College of Agriculture, Food & Natural Resources, the Bond Life Sciences Center and the Chancellor’s Distinguished Visitors Program.

 

 

 

 

 

 

 

 

“Bucket” actor kicked Hollywood career, has enjoyed life in veterinary medicine

Dr. Peter Ostrum spoke at Bond LSC in celebration of World One Health Day

By Phillip Sitter |Bond LSC

DSC_2222.jpg

Dr. Peter Ostrum, who once played the character of Charlie Bucket in 1971’s “Willy Wonka and the Chocolate Factory” —also starring the late Gene Wilder — smiles after giving a lecture to an audience at Monsanto Auditorium in Bond LSC. After “Willy Wonka,” Ostrum did not pursue acting further, and went into a career in veterinary medicine. | photo by Phillip Sitter, Bond LSC

 

The character of Charlie Bucket found his golden ticket to a happy life wrapped in a Willy Wonka chocolate bar. Peter Ostrum, who at the time was just a child actor playing Charlie, later found his in horse pastures.

After playing Charlie in 1971’s “Willy Wonka and the Chocolate Factory” alongside the late Gene Wilder starring in the titular role, Ostrum didn’t pursue acting any further. He spoke about life as a veterinarian Nov. 3 at Monsanto Auditorium in Bond Life Sciences Center.

“People are always curious about what happened to Charlie. Why wasn’t he in any other films? Did he survive Hollywood? I’m relieved to tell you that my life didn’t end up as a trainwreck,” Ostrum said, getting some laughs from the crowd gathered to listen to him speak.

“The film industry just wasn’t for me,” he explained, although he did enjoy working alongside Wilder and co-star Jack Albertson, who played Grandpa Joe. Ostrum said that every day on lunch break during filming in Munich, Germany, Wilder would share a chocolate bar with him.

Back at home in Ohio, Ostrum worked at a stable, and had several positive interactions with veterinarians. He admired the profession, and working with horses specifically. He even went on to be a groomer for the Japanese three-day equestrian event team at the 1976 Summer Olympics in Montreal.

He wanted to become an equine veterinarian after a year working at an equine veterinary clinic. However, Ostrum discovered that dairy cow care fell more in line with his dreams, and after getting his veterinary degree at Cornell, he’s been doing that ever since — in upstate New York where he is also a husband and father of two children.

Ostrum described how agriculture and veterinary medicine have changed over recent years, with changing numbers and sizes of farms, the rising power of animal welfare groups and an increased desire from consumers to know where their food comes from. People want to know whether animals are treated humanely and whether farms are negatively affecting the environment, he said.

All of these changes and others require increased transparency, education and community outreach efforts by everyone working in agriculture, Ostrum said. In candidates for veterinary associates, he said that he looks for “the intangible skills at the heart of who people are” — their character and their ability to connect with clients and patients.

Ostrum also mentioned the importance of mental health awareness among veterinarians and other health professionals. “We can’t help others if we can’t help and support ourselves,” he said.

 

Ostrum was invited to speak at Bond LSC in celebration of World One Health Day — an effort to spur collaboration between experts in human, animal and environmental health. Attendees at the lecture could purchase chocolate bars for three dollars, and five bars out of 200 available contained golden tickets that entitled winners to prize baskets. Proceeds went to MU’s Veterinary Health Center’s Barkley House project — a guest house for families of pets receiving treatment.

Saturday Morning Science returns to Bond LSC

DSC_2108.jpg

This past weekend not only ushered in Mizzou’s first home game of the season, but the return of Saturday Morning Science. The weekly lecture series connects the Columbia community with MU scientists and their research, from bio-engineering to volcanology to anthropology and linguistics.

Elizabeth G. Loboa, dean of the College of Engineering, kicked off the semester with her talk on tissue engineering in the age of drug-resistant bacteria.

Tissue engineering is about turning cells into tissues and organs, for example, fat-derived stem cells into muscle, bone and cartilage. The tissues take shape on tiny scaffolds that are bio-compatible and biodegradable.

The Loboa lab does this, but they’ve added an extra layer to their research: Loboa’s scaffolds also act as pipelines that deliver wound-healing and anti-bacterial compounds to cells as they grow into tissue. The idea is to reduce infection, inflammation and scarring as the wound heals.

“We’re trying to kill these bacteria while helping these stem cells become the cells we want to create,” Loboa said, about her research at the University of North Carolina-Chapel Hill and North Carolina State University.

Using a process called electrospinning, Loboa’s group makes scaffolds shaped like porous fibers, sheaths, or hollow sheaths. Depending on their structure, these scaffolds act like faucet taps that control the rate and timing at which anti-bacterial compounds are released.

“I look at our fibers as delivery platforms,” Loboa said.

Saturday Morning Science takes place 10:30 a.m. Saturday at the Bond LSC’s Monsanto Auditorium. Coffee and bagels are available preceding the talks. This semester’s schedule is as follows:

9/17: Carolyn Orbann, Assistant Teaching Professor, Department of Health Sciences, “Historical Epidemics, Novel Techniques: Using Historical and Ethnographic Materials to Build Computer Simulation Models”

9/24: Michael Marlo: Associate Professor of English, “Documenting linguistic diversity: a view from the East African Great Lakes”

10/1: Steve Keller, Associate Professor of Chemistry, “The 20 Greatest Hits in Science…In an Hour”

10/8: Manuel Leal, Associate Professor of Biological Sciences, “Are Lizards Smarter Than Those Who Study them?”

10/15: Stephan Kanne: Executive Director and Associate Professor, Thompson Center for Autism & Neurodevelopmental Disorders, “What Do We Look For When We Diagnose Autism?”

10/29: Libby Cowgill, Assistant Professor Anthropology, “Fitness for the Ages: How to Lift Like a Neanderthal?”

11/5: Arianna Soldati, Ph.D. Candidate, Department of Geological Sciences, “Living in a Viscous World: A Volcanologist’s Perspective”

11/12: Frank Schmidt and Gavin Conant, Professor of Biochemistry (Schmidt); Associate Professor of Bioinformatics, Department of Animal Science (Conant), “Networks in Biology and Beyond”

12/3: Elizabeth King, Assistant Professor, Division of Biological Sciences, “What’s the Best Way to Divide up the Pie: The Price of Long Life”