About Roger Meissen

Posts by Roger Meissen:

From neuroscience to negotiations

Neuroscientist and former Secretary of State science adviser to speak at Life Sciences Week
By Eleanor C. Hasenbeck | Bond Life Sciences

Frances Colon

Frances Colón has spent the past decade representing the United States all over the world on topics ranging from climate change to the advancement of women scientists. She will reflect on that experience in her talk at 3:30 p.m. Monday, April 11 in Monsanto Auditorium. | Photo courtesy of Frances Colón

A career in science doesn’t only mean working in a lab, and no one knows that better than Frances Colón.

Colón, a neuroscientist by training and policy maker by trade, will speak about how scientists can become more involved in policy without abandoning the laboratory bench.

During her Missouri Life Sciences Week lecture “My path to science citizenship,” Colón will talk about her transition from the lab to policy. She’ll speak 3:30 p.m. Monday, April 10, in Monsanto Auditorium.

“I think scientists need to realize that they have a broader set of skills than they give themselves credit for that can be applied to the service of the community and their country in many different ways,” said Colón. “I think we’re living in a time where our country needs scientists to get engaged at every level. That doesn’t mean they need to leave a career in academia to go into policy, but it could certainly mean involvement everywhere from the community level to the national level.”

After receiving a doctoral degree in neuroscience and studying how nerve cells mature at Brandeis University, Colón first got involved in making policy as an American Association for the Advancement of Sciences policy fellow. She then served as science and environment adviser for western hemisphere affairs for more than three years before she became deputy science and technology adviser to the Secretary of State, a position she served in until January.

As deputy science adviser, she led efforts to reengage Cuba in scientific collaboration after U.S. policy regarding Cuba shifted. She also coordinated climate change policy for the Energy and Climate Partnership of the Americas, and she worked to advance women and girls in science, technology, engineering and math. Today, she looks to use platforms outside of the government to accomplish the same missions.

Colón said of her career thus far, she is most proud of the work she’s done to educate women in opportunities in STEM careers.

“A lot of these countries started to realize that they can’t tackle a lot of the biggest challenges they’re confronting, from climate change to energy security, without having all of their best talent at the table. That required providing equal opportunity for women and men to achieve these positions,” Colón said. “We worked a lot on finding opportunities for girls to discover STEM careers and to help countries plan out what their STEM capacity building activities could be.”

These activities included things like the two-week camps for girls in South America and Africa, where they learned about coding and genetics with help from corporate partners.

Colón holds a doctorate from Brandeis University, and a bachelor’s degree in biology from the University of Puerto Rico. She was a delegate to the National Committee on U.S.-China Relations’ Young Leaders Forum, and a graduate of the National Hispana Leadership Institute. Last year, she was named one of the 20 most influential Latinos in technology by CNET en Español.

Colón will speak at 3:30 Monday, April 10 in Monsanto Auditorium as part of Missouri Life Sciences Week.

Hanson to explain why broken metabolites matter at Life Sciences Week

By Jinghong Chen | Bond Life Sciences Center

Andrew Hanson, right, will speak Friday, April 14 in Bond LSC's Monsanto Auditorium as the 2017 Dr. Charles W Gehrke speaker. | Photo by University of Florida, Institute of Food and Agricultural Sciences

Andrew Hanson, right, will speak Friday, April 14 in Bond LSC’s Monsanto Auditorium as the 2017 Dr. Charles W Gehrke speaker. | Photo by University of Florida, Institute of Food and Agricultural Sciences

People often think of metabolism as a perfect network. But that assumption is simply not accurate.

Andrew Hanson, an eminent scholar and professor at the University of Florida, describes the misunderstanding as “the power of a paradigm.” American biochemist Albert Lehninger spread the misunderstanding in his classic textbook “Biochemistry”, in which the message he communicated to generations of students was: metabolism is a beautiful machine that functions flawlessly.

Hanson challenges this “metabolism is perfect” paradigm using illustrations from different kinds of organisms in his lecture. He will speak in Bond LSC’s Monsanto Auditorium at 1 p.m. Friday April 14, during the 33rd annual Missouri Life Sciences Week.

For every living organism, metabolism is the sum of every chemical reaction that occurs to maintain life. This sum contains all the metabolites — small molecules created at each level of cell processes and final products — that share a part in the growth, development, reproduction and running of cells and whole organisms.

However, enzymes can make mistakes; many chemical compounds in cells are unstable and undergo spontaneous reactions. The consequences of enzyme errors and chemical side-reactions are, at best, unwanted and sometimes toxic, so organisms have developed mechanisms – damage-control systems – to deal with the consequences of damage.

Hanson’s lab has studied metabolite damage and the damage-control systems that plants and microorganisms employ to cope. But the impact of metabolic problems also reaches into the human domain, causing disease from failure or mutation of damage repair enzymes. “It matters in aging humans and animals a great deal, because aging is the result of cumulative damage,” Hanson said.

Plants are also afflicted by metabolite damage. Under environmental stress such as high temperature or water loss, the error rate of enzymes and rates of unwanted chemical reactions can go up.

The understanding of metabolite damage could also advance metabolic engineering, which is a purposeful manipulation by combining metabolic pathways and DNA techniques to produce desired products. After creating new pathways in an organism, it may fail to cope with the abnormal reactions produced by the new pathways. To fix the problem, the only solution might be to install the required damage control enzymes.

Hanson’s lab hopes to identify new or unsuspected damage reactions, and enzymes that repair or prevent damage. They also are working to connect with metabolic engineering groups that install modified pathways in plants and microbes to study sources of damage and propose solutions.

Metabolism is not perfect. However, after studying its imperfection for years, Hanson concluded, “life is put together in a very beautiful and even more powerful way than we first realize. It makes a lot of mistakes, but it also fixes them so well that we do not even notice them.”

Hanson’s lecture on “Fixing or safely trashing broken metabolites and why it matters” is this year’s Charles W. Gehrke distinguished lecture. Gehrke, a longtime MU professor of Biochemistry, was selected by NASA to analyze rocks retrieved from the first moon landing for any traces of extraterrestrial life. He died in 2009.

Hanson’s lecture is free and open to the public as part of Missouri Life Sciences Week. It occurs at 1:00 on Friday, April 14 in Bond LSC’s Monsanto Auditorium. See more about events during the week at bondlsc.missouri.edu/life-sciences-week.

Pork without the Pig

Screen Shot 2017-02-15 at 3.38.05 PM.jpg

This screenshot of a supplemental video included in Genovese’s study shows cultured pork cells contracting in response to a neurotransmitter. | photo courtesy of the Nicholas Genovese

What if you could have pork without the pig? Nicholas Genovese’s cultured meat could provide a more environmentally friendly meat
By Eleanor C. Hasenbeck | MU Bond Life Sciences Center

Scientists are one step closer to that reality. For the first time, researchers in the Roberts’ lab at Bond Life Sciences Center at MU were able to create a framework to make pig skeletal muscle cells from cell cultures.

In vitro meat, also known as cultured meat or cell-cultured meat, is made up of muscle cells created from cultured stem cells.

As a visiting scholar at the University of Missouri, Nicholas Genovese mapped out pathways to successfully create the first batch of in vitro pork. Genovese also said it was the first time it was done without an animal serum, a growth agent made from animal blood.

According to Genovese, his research in the Roberts Lab was also the first time the field of in vitro meats was studied at an American university.

“I feel it’s a very meaningful way to create more environmentally sustainable meats, which is going to use fewer resources, with fewer environmental impacts and reduce need for animal suffering and slaughter while providing meats for everyone who loves meat,” Genovese said.

The research could have environmental impacts. According to the United Nation’s Food and Agriculture Organization, livestock produce 14.5 percent of all human-produced greenhouse gas emissions. Livestock grazing and feed production takes up 59 percent of the earth’s un-iced landscape. Cultured meat takes up only as much land as the laboratory or kitchen (or carnery, the term some members of the industry have coined for their facilities) it is produced in. It uses energy more efficiently. According to Genovese, three calories of energy can produce one calorie of consumable meat. The conversion factor in meat produced by an animal is much higher. According to the FAO, a cow must consume 11 calories to produce one calorie of beef for human consumption.

And while Michael Roberts, the lab’s principal investigator, is skeptical of how successful in vitro meat will be, he said the results could yield other benefits. Researchers might be able to use a similar technique as they used to create skeletal muscle tissue to make cardiac muscle tissue. Pork muscles are anatomically similar to a human’s and can be used to model treatments for regenerative muscle therapies, like replacing tissue damaged by injury or heart attacks.

“I was interested in using these cells to show that we could differentiate them into a tissue. It’d been done with human and mouse, but we’re not going to eat human and mouse,” Roberts said. “The pig is so similar in many respects to humans, that if you’re going to test out technology and regenerative medicine, the pig is really an ideal animal for doing this, particularly for heart muscle,” he added.

While you won’t find in vitro meat in the supermarket just yet, Genovese and others are working toward making cultured meats a reality for the masses. Right now, producing in vitro meat is too costly to make it economically viable. Meat is produced in small batches, and the technology needed to mass-produce it just isn’t there yet.  Genovese recently co-founded the company Memphis Meats, where he now serves as Chief Scientific Officer. The company premiered the first in vitro meatball last year, at the hefty price tag of $18,000.

“We are rapidly accelerating our process towards developments of technology that we hope will make cultured meats accessible to everyone within the not-so-distant future,” Genovese said.

Nicholas Genovese was a member of the Roberts lab in Bond LSC from 2012 to 2016. The study “Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells” was recently published by the journal Scientific Reports in February 2017.

Chemical persuasion

Scientists prove parasite mimics key plant peptide to feed off roots
By Roger Meissen | Bond LSC

A nematode (the oblong object on the upper left) activates the vascular stem cell pathway in the developing nematode feeding site (syncytium) on a plant root. | contributed by Melissa Mitchum

A nematode (the oblong object on the left) activates the vascular stem cell pathway in the developing nematode feeding site (syncytium) on a plant root. | photo by Xiaoli Guo, MU post-doctoral research associate

When it comes to nematodes, unraveling the root of the issue is complicated.

These tiny parasites siphon off the nutrients from the roots of important crops like soybeans, and scientists keep uncovering more about how they accomplish this task.

Research from the lab of Bond LSC’s Melissa Mitchum recently pinpointed a new way nematodes take over root cells.

DSC_4307.jpg

Melissa Mitchum | photo by Roger Meissen, Bond LSC

“In a normal plant, the plant sends different chemical signals to form different types of structures for a plant. One of those structures is the xylem for nutrient flow,” said Mitchum, an associate professor in the Division of Plant Sciences at MU. “Plant researchers discovered a peptide signal for vascular stem cells several years ago, but this is the first time anyone has proven that a nematode is also secreting chemical mimics to keep these stem cells from changing into the plant structures they normally would.”

Stem cells? Xylem? Chemical mimics?

Let’s unpack what’s going on.

First, all plants contain stem cells. These are cells with unbridled potential and are at the growth centers in a plant. Think the tips of shoots and roots. With the right urging, plant stem cells can turn into many different types of cells.

That influence often comes in the form of chemicals. These chemicals are typically made inside the plant and when stem cells are exposed to them at the right time, they turn certain genes either on or off that in turn start a transformation of these cells into more specialized organs.

Want a leaf? Expose a stem cell to a particular combination of chemicals. Need a root? Flood it with a different concoction of peptides. The xylem — the dead cells that pipe water and nutrients up and down the plant — requires a particular type of peptide that connects with just the right receptor to start the process.

But for a nematode, the plan is to hijack the plant’s plan and make plant cells feed it. This microscopic worm attaches itself to a root and uses a needle-like mouthpiece to inject spit into a single root cell. That spit contains chemical signals of its own engineered to look like plant signals. In this case, these chemicals — B-type CLE peptides — and their purpose are just being discovered by Mitchum’s lab.

“Now a nematode doesn’t want to turn its feeding site into xylem because these are dead cells it can’t use, so they may be tapping into part of the pathway required to maintain the stems cells while suppressing xylem differentiation to form a structure that serves as a nutrient sink,” Mitchum said. “To me that’s really cool.”

This means these cells are free to serve the nematode. Many of their cell walls dissolve to create a large nutrient storage container for the nematode and some create finger-like cell wall ingrowths that increase the take up of food being piped through the roots. For a nematode, that’s a lifetime of meals for it while it sits immobile, just eating.

But how did scientists figure out and test that this nematode’s chemical was the cause?

Using next generation sequencing technologies that were previously unavailable, Michael Gardner, a graduate research assistant, and Jianying Wang, a senior research associate in Mitchum’s lab, compared the pieces of the plant and nematode genome and found nearly identical peptides in both — B-type CLE peptides.

“Everything is faster, more sensitive and we can detect things that had gone undetected through these technological advances that didn’t exist 10 years ago,” Mitchum said.

To test their theory, Xiaoli Guo, postdoctoral researcher and first author of the study in Mitchum’s lab synthesized the B-type CLE nematode peptide and applied it to vascular stem cells of the model plant Arabidopsis. They found that the nematode peptides triggered a growth response in much the same way as the plants own peptides affected development.

They used mutant Arabidopsis plants engineered to not be affected as much by this peptide to confirm their findings.

“We knocked out genes in the plant to turn off this pathway, and that caused the nematode’s feeding cell to be compromised. That’s why you see reduced development of the nematode on the plants.”

This all matters because these tiny nematodes cost U.S. farmers billions every year in lost yields from soybeans, and similar nematodes affect sugar beets, potatoes, corn and other crops.

While this discovery is just a piece of a puzzle, these pieces hopefully will come together to build better crops.

“You have to know what is happening before you can intervene,” Mitchum said. “Now our biggest hurdle is to figure out how to not compromise plant growth while blocking only the nematode’s version of this peptide.”

Mitchum is a Bond LSC investigator and an associate professor of Plant Sciences in the College of Agriculture, Food and Natural Resources. The study Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation” recently was published by the journal PLOS Pathogens in February 2017.

Growing a more nourishing future

Nga Nguyen hopes to apply her research to increase nutrient contents in crop plants
By Eleanor C. Hasenbeck | Bond LSC

DSC_2669.jpg

Nga Nguyen, a doctoral candidate in MU’s Division of Plant Sciences, observes samples of a model plant species, Arabidopsis thaliana, in the Mendoza-Cózatl lab at Bond Life Sciences Center on Feb. 7, 2017. | photo by Eleanor C. Hasenbeck, Bond LSC

Plants smell better than animals, at least to Nga Nguyen. That’s one reason why she decided to study them.

“In my undergrad, I studied horticulture,” Nguyen said. “For that you don’t really learn the inside mechanisms of plants, so I decided besides knowing the cultivation techniques, I’d like to also learn about the molecular biology.”

As a fifth year doctoral candidate in the Mendoza-Cózatl lab at Bond Life Sciences Center, she hopes to combine her undergraduate background with her present research in the microbiology of plants to improve the crops of the future.

Nguyen studies how transporter proteins move micronutrients like iron through plants. By understanding how plants move these nutrients in model plants, researchers hope to apply the same understanding and techniques to crops like soy and common beans. Increasing the micronutrient content of these crops could be a useful tool in combatting nutrient deficiencies in areas where people don’t have access to meat and dairy.

But Nguyen says the benefits of studying plants don’t end there. “I hope people pay attention to plant research and study,” Nguyen said.  “If you think about it, it’s not just our food, but our clothing and the materials we use.”

Beginning of a journey

By Jinghong Chen | Bond Life Sciences Center

DSC_8812.jpg

Emily Million, a prospective biochemistry graduate student from Truman State University and Kevin Muñoz-Forti of University of Puerto Rico’s Pontifical Catholic University talk at the Graduate Life Sciences Joint Recruitment Weekend on February 4 after looking at posters about many different research programs and projects. | Roger Meissen, Bond LSC

Nick Dietz was not certain where to start his research journey this time last year.

But the atmosphere during a recruitment weekend nearly a year ago convinced him to pick MU over three other offers of admission. He is now a first-year plant sciences Ph.D. graduate student and life sciences fellow at MU.

“It is crucially important for [prospective] graduate students to feel they are going to feel like home, and Mizzou just knocked out that part with the recruitment weekend,” said Dietz.

The Graduate Life Sciences Joint Recruitment Weekend, an annual event since 2010, builds a two-way street between MU faculties and prospective graduate students and helps them to determine whether MU is the place for them to continue their education.

This year, about 35 prospective students with different academic backgrounds participated in the recruitment event.

“Up to this point, the departments only know these [prospective] students on paper,” said Debbie Allen, coordinator of Graduate Initiatives. “But this is an chance for the faculty and staff to meet them in person to get a feel that whether they are going to be a good fit for our program.”

Conversely, the prospective students also gain deeper understanding of MU via tours around the campus and the laboratories, one-on-one interviews with potential advisors and interdisciplinary poster sessions. The event combines recruiting efforts from the division of Biochemistry, Plant Sciences, Molecular Pathogenesis and Therapeutics graduate program, Genetics Area program, MU Information Institute, the Interdisciplinary Plant Group and Life Sciences Fellowship Program.

More than 100 faculty, graduate students and post-doctoral fellows joined the recruitment weekend. They play a valuable role in interacting with the prospective students, as they are the ones who are in the midst of MU life.

DSC_8833.jpg

Nick Dietz, a freshman plant sciences graduate student, volunteered as a student ambassador during the the annual Graduate Life Sciences Joint Recruitment Weekend Saturday, Feb. 4. Dietz said last year’s event clinched his decision to attend MU and made him want to help prospective students make their decisions on where to attend. | photo by Roger Meissen, Bond LSC

Dietz joined that effort as a student ambassador. He toured Matthew Murphy, an Illinois College graduate, around the campus and shuttled him to different interviews.

Murphy drove from St. Louis for the recruitment weekend. With a major in biology and a minor in mathematics, he wishes to submerge himself into plant sciences.

During his gap year at the Donald Danforth Plant Science Center after graduation, Murphy learned about the division of Plant Sciences, which is one of the MU’s strongest programs. That eventually got him pumped up to apply for MU.

The recruitment weekend energized him further.

“Every graduate student I have talked to is really helpful and honest,” said Murphy. “They are all saying… how thankful they are to pick Mizzou.”

DSC_8845.jpg

Lloyd Sumner, professor of biochemistry and director of MU’s Metabolomics Center in Bond LSC, talks with a prospective graduate student Saturday, Feb. 4, during the annual Graduate Life Sciences Joint Recruitment Weekend. | photo by Roger Meissen, Bond LSC

Lloyd Sumner, an MU professor of biochemistry, is expecting new students to join his lab. He had lunch and one-on-one meetings with the 11 prospective students invited by the biochemistry department, and toured them around his lab to showcase the instrumental resources.

“These are educated young adults with often very grand ideas. It is inspiring to visit with them and to be part of their future goals and careers,” Sumner said.

After six months rotating between different labs, Dietz has not yet decided which research route he will take yet. Nevertheless, he remains certain of one thing: he is enjoying the life here.

“It is a really warm atmosphere,” said Dietz. “I don’t feel I am being used as a labor. Professors actually want me to do well and get a good education.”

A plant remedy

MU Center for Agroforestry symposium talks medicinal plants
By Jinghong Chen | Bond LSC

Agroforestry.jpg

Rob Riedel from Wild Ozark Ginseng Farm introduces their products at the agroforestry symposium on Jan. 26th, 2017 | photo by Jinghong Chen, Bond LSC

Researchers, landowners and entrepreneurs converged at Bond Life Sciences Center to discuss current developments and topics in medicinal plants and agroforestry at the eighth UMCA Agroforestry Symposium. This daylong annual event, hosted by the Center for Agroforestry, took place on Thursday, Jan. 26.

People have been using medicinal plants as natural remedies and medicines for thousands of years all over the world. The global market of medicinal plants industry is huge.

“It is going to approach nearly $115 billion by 2020,” said Dr. Shibu Jose, director of MU Center for Agroforestry.

The university practices research projects on how to grow medicinal plants in a sustainable manner and how to harvest and process them, according to Dr. Jose.

Agroforestry keynote speaker.jpg

Keynote speaker Tom Newmark talks about medicinal plants at the agroforestry symposium on Jan. 26th, 2017 | photo by Jinghong Chen, Bond LSC

Tim Newmark of the American Botanical Council said climate change and the loss of soil are two main threats to herb plants. His keynote speech is on how to use regenerative practices in medicinal plants and agroforestry to positively impact the environment. A recent White House report wrote that without cooperated actions, the United of States will run out of the topsoil by the end of this century.

“We are eating our environment,” said Newmark.

Four main destructive forces leading to the dramatic loss of soil are excessive tilling, monoculture, synthetic nitrogen fertilization and pesticides.

Newmark did a side-by-side test in his farm in Costa Rica during the worst drought in the country. He implanted cassava in two fields under identical conditions and applied the best practice of conventional agrochemical agriculture and regenerative practice, respectively.

When the drought happened with six weeks of no rain in the rainforest, only the crop in conventional field was a complete failure.

Newmark said the next trend in the plants industry is agriculture focusing on regenerative plant soil.

Seven other speakers also presented on medicinal plants and included:

Dr. Jim Chamberlain, from US Forest Service, on forest management and medicinal plants

Dr. Susan Leopold, from United Plant Savers, on the conservation of medicinal plants

Dr. Jed W. Fahey, from Johns Hopkins University, on researches on moringa oleifera

Dr. Lloyd Sumner, from the University of Missouri, on the metabolomics opportunities and application in pecan

Dr. Chung-Ho Lin, from the University of Missouri, on how to identify value-added compounds from waste plant materials

Dr. Bill Folk, from University of Missouri, on International partnerships in medicinal plants

Steven Foster, an author and photographer, on field guide on medicinal plants and herbs

The agroforestry symposium is held annually with different themes. It has focused on climate change and pollinators, previously.

Read more here about the Agroforestry Symposium on the Center for Agroforestry website.

Cornelison receives highest honor from White House

DSC_5975.jpg
It feels good to get recognition, especially when it comes from the White House.

This week D Cornelison, a Bond Life Sciences Center researcher and associate professor of biological sciences found out she will receive a Presidential Early Career Award for Scientists and Engineers (PECASE). The award is the highest honor bestowed by the United States government on science and engineering professionals in the early stages of their independent research careers. She joins 102 researchers this year selected by the White House to receive this prestigious award.

This is a first for Missouri as a state as well as MU, making her the only scientist based in Missouri to ever be selected. Cornelison was nominated by her program officer at the National Institutes of Health, which funds her work on satellite cells.

Read more here from Melody Kroll on the Division of Biological Sciences website.

If you’d rather hear about it from her mouth, listen to Cornelison’s interview on KFRU Wednesday morning.

The eyes have it

Bond LSC scientist works with MU eye surgeon to help people suffering from autoimmune-disease Sjögren’s syndrome

By Phillip Sitter | Bond LSC

DSC_2141.jpg

Dr. Carisa Petris stands in the McQuinn atrium of Bond Life Science Center. She and Bond LSC researcher Gary Weisman are using funding from a $100,000 Bond LSC grant to study the mechanisms of an auto-immune disease in the lacrimal glands of the eyes. They are hoping treatments for the disease in mice they study could be applied to humans. | photo by Phillip Sitter, Bond LSC

 

They may not get much respect, but tears and spit are the products of a delicate secretive system that people would pay their respects to in mourning if they discovered that system was dying.

Gary Weisman and Dr. Carisa Petris are working together to help heal the damage caused by such a chronic lack of tears and saliva. The pair recently received a $100,000 Bond Life Sciences Center Grant for Innovative Collaborative Research to allow Bond LSC’s Weisman to partner with Petris, an eye surgeon working at MU Hospital.

They want to study the mechanism by which the auto-immune disease Sjögren’s syndrome cripples the glands of the eyes in mice. By comparing that mechanism to how it works in human eyes, they hope to examine if effective treatments for the mice could in turn help people.

“Dr. Weisman has characterized [Sjögren’s syndrome] in the salivary glands, and then there are similar glands in the eye called the lacrimal glands, and those are the tissues that we’re going to study,” she said of their collaboration.

Sjögren’s attacks the glands in our bodies that produce tears and saliva. Without tears and saliva, people suffer chronic dry mouth and eyes and are more susceptible to infections. Sjögren’s itself can also spread to other parts of the body, including the lungs, kidneys and digestive organs. An estimated four million people in the United States live with the disease, according to the Sjögren’s Syndrome Foundation.

Much of the grant money will go toward the costs of obtaining and housing new knockout mice for the study. These mice have a disabled, or knocked out, gene that causes them to express a certain trait like the dry eyes and development of Sjögren’s in this case.

“It takes a few weeks to a couple months for the disease to fully manifest itself, so we’ll house those mice for that time, and then of course, we’ll be treating them with the drug, and not with the drug, some for harvesting just the lacrimal glands and [studying] the surface of the eye,” Petris said.

Even though Sjögren’s syndrome and inflammation research are big topics, there’s just no good solution to the problems yet.

“There are a few [eye] drops that are used for Sjögren’s now, and they’re at best helpful, but they don’t cure the disease, so that would be the ultimate goal. They help decrease the inflammation that goes along with it and increase the tear production. The drops are also limited in their longevity too — you can only use them a certain length of time before they tend to not work so well anymore,” Petris said.

Petris referred to one drug that shows promise. The drug or another like it would interrupt the autoimmune response that causes the damaging inflammation that leads to Sjögren’s. It has already shown good results for reducing the symptom of dry mouth in mice, so Petris said she and Weisman will add it to some of the eyes of their mice and see if has any similar effect it reducing dryness there.

 

Gary Weisman was recently recognized for his career studying auto-immune responses with an award at an international conference in Seoul, Republic of Korea. Read more about Sjögren’s syndrome and Weisman’s work here.

This seed funding is one of seven awarded this year at the Bond Life Sciences Center. These awards, which range from $40,000 to $100,000 in funding, foster inter-laboratory collaboration and make possible the development of pilot projects. Read more about another Bond LSC seed funding grant-supported collaborative project here.

“Bucket” actor kicked Hollywood career, has enjoyed life in veterinary medicine

Dr. Peter Ostrum spoke at Bond LSC in celebration of World One Health Day

By Phillip Sitter |Bond LSC

DSC_2222.jpg

Dr. Peter Ostrum, who once played the character of Charlie Bucket in 1971’s “Willy Wonka and the Chocolate Factory” —also starring the late Gene Wilder — smiles after giving a lecture to an audience at Monsanto Auditorium in Bond LSC. After “Willy Wonka,” Ostrum did not pursue acting further, and went into a career in veterinary medicine. | photo by Phillip Sitter, Bond LSC

 

The character of Charlie Bucket found his golden ticket to a happy life wrapped in a Willy Wonka chocolate bar. Peter Ostrum, who at the time was just a child actor playing Charlie, later found his in horse pastures.

After playing Charlie in 1971’s “Willy Wonka and the Chocolate Factory” alongside the late Gene Wilder starring in the titular role, Ostrum didn’t pursue acting any further. He spoke about life as a veterinarian Nov. 3 at Monsanto Auditorium in Bond Life Sciences Center.

“People are always curious about what happened to Charlie. Why wasn’t he in any other films? Did he survive Hollywood? I’m relieved to tell you that my life didn’t end up as a trainwreck,” Ostrum said, getting some laughs from the crowd gathered to listen to him speak.

“The film industry just wasn’t for me,” he explained, although he did enjoy working alongside Wilder and co-star Jack Albertson, who played Grandpa Joe. Ostrum said that every day on lunch break during filming in Munich, Germany, Wilder would share a chocolate bar with him.

Back at home in Ohio, Ostrum worked at a stable, and had several positive interactions with veterinarians. He admired the profession, and working with horses specifically. He even went on to be a groomer for the Japanese three-day equestrian event team at the 1976 Summer Olympics in Montreal.

He wanted to become an equine veterinarian after a year working at an equine veterinary clinic. However, Ostrum discovered that dairy cow care fell more in line with his dreams, and after getting his veterinary degree at Cornell, he’s been doing that ever since — in upstate New York where he is also a husband and father of two children.

Ostrum described how agriculture and veterinary medicine have changed over recent years, with changing numbers and sizes of farms, the rising power of animal welfare groups and an increased desire from consumers to know where their food comes from. People want to know whether animals are treated humanely and whether farms are negatively affecting the environment, he said.

All of these changes and others require increased transparency, education and community outreach efforts by everyone working in agriculture, Ostrum said. In candidates for veterinary associates, he said that he looks for “the intangible skills at the heart of who people are” — their character and their ability to connect with clients and patients.

Ostrum also mentioned the importance of mental health awareness among veterinarians and other health professionals. “We can’t help others if we can’t help and support ourselves,” he said.

 

Ostrum was invited to speak at Bond LSC in celebration of World One Health Day — an effort to spur collaboration between experts in human, animal and environmental health. Attendees at the lecture could purchase chocolate bars for three dollars, and five bars out of 200 available contained golden tickets that entitled winners to prize baskets. Proceeds went to MU’s Veterinary Health Center’s Barkley House project — a guest house for families of pets receiving treatment.