“#IAmScience because I get to apply knowledge from the classroom to my research.”
There are a number of ways to get involved in research, but tennis probably doesn’t come to mind. Rohit Rao was practicing his serve alongside Kamal Singh in 2015 when the two began talking about science.
The junior biology and psychology double major expressed his interest in working in research, and Singh offered for him to join Stefan Sarafianos’ lab in the Bond Life Sciences Center.
“I got my first taste of research in high school and found a passion I didn’t know I had,” Rao said. “I wanted to continue to grow as a researcher when I went to college, and meeting Kamal was a pretty clear path to doing that.”
Rao understands the idea that research builds upon itself, which is why learning the basics before coming to Mizzou proved helpful.
“In high school, I did civil engineering research testing water quality from the Missouri River,” Rao said. “It was clearly something I could see myself doing for many years.”
The Columbia native is following in his family’s footsteps by pursuing science.
“My family is full of doctors and scientists, so having that has given me a greater understanding of what goes on,” Rao said. “I was never pushed into it, though, because it’s something I really want to do.”
After graduating next year, Rao plans on attending medical school and applying the knowledge he’s gained from all of his experiences.
“There are things I learn from the lab and then it’s taught in class, and there are things I learn in class that are helpful in lab,” Rao said. “There’s a big class-lab application interaction.”
Those applications have proved helpful for Rao while working with Singh. He has grown as both a scientist and a researcher since that conversation on the tennis courts years ago.
Now, he works with Human Immunodeficiency Virus (HIV) and contributes to the drug development process.
“We check the biochemical characterization of HIV proteins,” Rao said. “We run various reactions with the HIV proteins to determine their biological characteristics and how the virus mutates to become resistant to approved drugs. Once we do that, we can help choose drugs to overcome that resistance.”
This process serves as the precursor to clinical trials, which ultimately leads to drugs going on the market.
While the work is classified as basic research, Rao is happy to do his part.
“You can’t do applied research without the basic research,” Rao said. “In science, creating the foundation for others to build upon is critical.”
Seeing the whole picture can mean a lot when it comes to figuring out HIV.
Researchers at the University of Missouri Bond Life Sciences Center are gaining a clearer idea of what a key protein in HIV looks like, which will help explain the flexible protein’s vital role in the virus life cycle.
“The capsid acts as an invisibility cloak that hides the virus’ genetic information, the genome, while it is being copied in a hostile environment for the virus,” said Stefan Sarafianos, a virologist at Bond LSC and lead author of the study. “Fine-tuned capsid stability is critical for successful infection: too stable a capsid shell and the cargo is never delivered properly; not stable enough and the contents are detected by our immune defenses, triggering an antiviral response. Capsid stability is a key to the puzzle, and to solve it you have to understand its structure.”
This is the most complete model yet of an HIV-1 capsid protein. In a virus, the protein combines in groups of five or six — called pentamers and hexamers, respectively — that assemble into a mosaic that forms the capsid shell. Roughly 1,500 copies of the protein, grouped into about 250 hexamers and 12 pentamers, comprise the capsid.
HIV, or human immunodeficiency virus, is the retrovirus that leads to AIDS — acquired immunodeficiency syndrome. Roughly 1.2 million people live with HIV in the United States, according to the Centers for Disease Control and Prevention. Globally, about 35 million people were living with HIV in 2013.
A lucky break
Over the years, scientists have employed various techniques and tricks to figure out the structure of the capsid protein. But until now, the clearest image had been made of a mutated version of the protein. It was a compromise: the mutation made the protein stable enough that the scientists could get a good snapshot, but they couldn’t see the detailed interactions between hexamers.
Sarafianos’ lab figured out how to get the full picture: a detailed image of the unmodified proteins that filled all the gaps between hexamers.
The team used a technique called X-ray crystallography to unravel the protein’s secrets. Basically, they took many copies of the protein and coaxed them into forming a patterned, crystalline lattice. Next they shot high-powered X-ray beams at the crystal. By interpreting how the X-rays scattered when they ricocheted off the proteins, the researchers made a 3-D map of the protein.
“But it doesn’t make sense until we make an atomic model of the protein to fit in that map,” said Karen Kirby, a research scientist at Bond LSC. “The map is just a grid that you can’t really interpret unless you put a model into it to see ‘Ok, it looks like this part is here, and that part is there, and this is how the protein is put together.’”
The researchers altered, tested and honed their 3-D model until it exactly matched the map produced by the X-ray diffraction pattern. This can be difficult and painstaking, but the researchers’ greatest challenge was creating the protein crystals in the first place: Scientists had been trying to crystallize the unmodified version of the HIV protein for decades without success.
To make a crystal, proteins are suspended in a liquid then slowly precipitated out, just like a “grow your own crystals” kit. But there are a lot of variables that control the process, from salts and additives in the liquid to the amount of protein in the mixture.
“It’s a very delicate balance to grow crystals,” Kirby said. “Many people call it more of an art than a science. It’s frustrating because you can never predict which solution will grow crystals. There are a large number of variables.”
Initially, most arrangements the researchers tried resulted in useless brown junk, Kirby said, caused by the proteins forming solids too quickly. Anna Gres, an MU chemistry grad student who led the project, used a crystallization robot to screen roughly 2,500 conditions.
That was the easy part, Gres said: “The real challenge begins afterwards, as one needs to manually optimize the initial crystallization conditions to find the one that will produce protein crystals of desired quality. This process can take years. In our case, I think we were lucky: It took approximately 500 manual screenings and about 6 month.” But the hard work paid off when she was finally able to produce lovely, hexagonal crystals. Surprisingly, the crystals formed in groups of six proteins, which matched their formation in the viral capsid.
The transition from tiny, useless particulate to invaluable crystals was tremendously exciting, Kirby said. But even to Kirby and Sarafianos, why their attempts succeeded when many others failed remains a little mysterious.
“I still don’t know what are the fine details that made the difference,” Sarafianos said.
“That’s the million dollar question,” said Kirby. “We really don’t have a good answer for that.”
Although solving the enigmatic crystal structure of the native full-length capsid protein was really rewarding, Gres said, she will continue to tinker with her technique: “I am still trying to optimize crystallization conditions, hoping to improve the quality of the crystals and diffraction.”
Water, water everywhere
Once the researchers got a good look at the interactions between hexamers, they were surprised by what they found.
Based on the genetic sequence of the protein, scientists speculated that they would be hydrophobic, or repel water. Instead, they found that “ordered” water molecules at specific sites played a crucial structural role by bridging interactions at the interface between hexamers.
“We thought, ‘How could these lowly waters really be of consequence?’” Sarafianos said. “But if you think about it, there’s 256 of these hexamers in the whole capsid and all kinds of interfaces among them: There’s thousands of water molecules that stabilize the whole structure. We hypothesize that this is an essential part of the stability of the whole capsid molecule.”
To test that hypothesis, they took the crystals, dehydrated them and checked to see if their shape changed. Although the protein lattices may look like sturdy crystals, they’re more like jello, Sarafianos said.
“The protein molecules are precariously touching each other and forming a lattice that is very, very sensitive. It’s held together in this case by water molecules in addition to other interactions.”
The change in shape suggested that water molecules are important in that they allow the capsid to assume different shapes. Moreover, Sarafianos said, the capsid’s malleability and plasticity could be critical to the life cycle of the virus and allow it to act as a multi-functional molecular Swiss army knife.
Onward with research
A clearer image of the capsid protein, could help Sarafianos’ lab gain a better understanding of how the body combats the virus and to discover new ways to disrupt the viral capsid.
“Now we have a system to study effects of capsid-targeting compounds with novel mechanism of action,” Gres said.
Working with a medicinal chemist, Sarafianos’ lab will undertake an iterative process of making compounds, solving their structures, testing them against HIV and then refining the molecules, with the ultimate aim of producing new and effective antiviral drugs.
Over the weekend, Bond LSC HIV researchers Stefan Sarafianos, Marc Johnson and Donald Burke-Aguero joined Trail to a Cure, Inc., a Columbia nonprofit organization that helped fund important HIV research.
Since 2008, the organization has raised $74,000 for HIV/AIDS research, with some of that funding going directly to the Bond LSC providing additional hours of lab research. The 2014 online fundraising is still open and donations can be made to Trail to a Cure, Inc. until the end of the month.
The funding from Trail to a Cure helps Bond LSC researchers train future scientists and physicians in labs and in some cases, training them on the development of next generation therapies, Johnson said.
Resistance is the price of success when it comes to treating HIV.
Virologists at the Bond Life Sciences Center are helping to test the next generation of anti-AIDS medication to quell that resistance.
Stefan Sarafianos’ lab recently proved that EFdA, a compound that stops HIV from spreading, is 70 times more potent against some HIV that resists Tenofovir – one of the most used HIV drugs.
“HIV in patients treated with Tenofovir eventually develop a K65R RT mutation that causes a failure of this first line of defense,” said Sarafianos, virologist at Bond LSC. “Not only does EFdA work on resistant HIV, but it works 10 times better than on wild-type HIV that hasn’t become Tenofovir resistant.”
Sarafianos and a team of researchers found that EFdA (4′-ethynyl-2-fluoro-2′-deoxyadenosine) is activated by cells more readily and isn’t broken down by the liver and kidneys as quickly as similar existing drugs.
“These two reasons make it more potent than other drugs, and so our task is to look at the structural features that make it such a fantastic drug,” he said.
From soy sauce to virus killer
The path from EFdA’s discovery to current research is a bit unorthodox.
A Japanese soy sauce company named Yamasa patented this molecule, which falls into a family of compounds called nucleoside analogues that are very similar to existing drugs for HIV and other viruses. EFdA was designed and synthesized by Hiroshi Ohrui (Chem Rec. 2006; 6 (3), 133-143; Org. Lett. 2011; 13, 5264) and shown by Hiroaki Mitsuya, Eiichi Kodama, and Yamasa to have potential usefulness against HIV. Samples sent for further testing confirmed EFdA’s potential usefulness against HIV. This started more than a decade of research to pinpoint what makes the compound special.
EFdA joins a class of compounds called nucleoside reverse transcriptase inhibitors (NRTIs) that includes eight existing HIV drugs. Like all NRTIs, EFdA hijacks the process HIV uses to spread by tricking an enzyme called reverse transcriptase (RT). RT helps build new DNA from the RNA in HIV, assembling nucleoside building blocks into a chain. Since EFdA looks like those building blocks, RT is tricked into using the imposter. When this happens the virus’ code cannot be added to the DNA of white blood cells it attacks.
“NRTIs are called chain terminators because they stop the copying of the DNA chain, and once incorporated it’s like a dead end,” Sarafianos said.
A little help from some friends
Sarafianos isn’t alone in studying EFdA.
The virologist’s lab works closely with University of Pittsburgh biochemist Michael Parniak and the National Institutes of Health’s Hiroaki Mitsuya to explore the molecule’s potential. Mitsuya had a hand in discovering the first three drugs to treat HIV and Parniak has spent years evaluating HIV treatments using cultured white blood cells.
Sarafianos’ focus requires him to take a very close look at EFdA to define how it works on a molecular level. He uses virology, crystallography and nuclear magnetic resonance to piece together the exact structure, bonding angles and configuration of the compound.
By looking at subtle differences in EFdA’s sugar-like ring, his lab identified the best structure that looks the most like actual nucleosides, doesn’t break down easily and is activated readily by CD4+ T lymphocyte white blood cells.
“The structure of this compound is very important because it’s a lock and key kind of mechanism that can be recognized by the target,” Sarafianos said. “We’re looking at small changes and the ideal scenario is a compound bound very efficiently by the target and activating enzyme but not efficiently by the degrading enzymes.”
Treatment for the future
The research of Sarafianos, Parniak and Mitsuya continue to uncover the magic of EFdA. In 2012, they showed that the drug worked incredibly well to treat the HIV equivalent in monkeys.
“These animals were so lethargic, so ill, that they were scheduled to be euthanized when EFdA was administered,” said Parniak. “Within a month they were bouncing around in their cages, looking very happy and their virus load dropped to undetectable levels. That shows you the activity of the molecule; it’s so active that resistance doesn’t come in as much of a factor with it.”
HIV prevention is the newest focus in their collaboration.
By recruiting formulation expert Lisa Rohan at the University of Pittsburgh, they are now putting EFdA in a vaginal film with a consistency similar to Listerine breath strips.
“The only way we are going to make a difference with HIV is prevention,” Parniak said. “If we can prevent transmission, this approach could make a huge difference in minimizing the continued spread of the disease when combined with existing therapies for people already infected.”
While AIDS in the U.S. occurs mostly in men, the opposite is true in sub-Saharan Africa where more than 70 percent of HIV cases occur. Since a film has a better shelf life than creams or gels, it could benefit those at risk in extreme climates and third-world countries.
“We have nearly 30 drugs approved for treating HIV infected individuals, but only one approved for prevention,” Sarafianos said. “Women in Africa would benefit from a formulation like this as a means to protect themselves.”
Despite this success, Sarafianos and Parniak aren’t slowing down in figuring out how EFdA works so well.
“We want to understand how long EFdA stays in the bloodstream and cells,” Parniak said. “If we understand structurally why this drug is so potent it allows us to maybe develop additional molecules equally potent, and a combination of those molecules could be a blockbuster.”
Grants from the National Institutes of Health fund this research.
In 2013 and 2014, the journals Retrovirology, Antimicrobial Agents and Chemotherapy and The International Journal of Pharmaceutics published this group’s work on EFdA. Sarafianos is an associate professor of molecular microbiology and immunology and Chancellor’s Chair of Excellence in molecular virology with MU’s School of Medicine and a joint associate professor of biochemistry in the MU College of Agriculture, Food and Natural Resources.