#IAmScience

Madeline McFarland #IAmScience

MadelineMcFarland.jpg

Madeline McFarland, a senior biochemistry major, works in the Burke Lab in Bond LSC. | photo by Allison Scott, Bond LSC

Science isn’t limited to the lab. It’s more of a mindset than a discipline, and Madeline McFarland knows this all too well.

As a senior biochemistry major working in Donald Burke’s lab in Bond LSC, McFarland experiments with ribonucleic acid (RNA) to study the origin of life before DNA and protein served as genetic material and catalyst, respectively.

“I’m interested in the RNA World Hypothesis and how RNA may have played a role in getting life started on our planet,” McFarland said.

This hypothesis suggests early forms of life on Earth may have relied solely on RNA to store genetic information and to catalalyze, or spur, chemical reactions. The theory goes that DNA eventually evolved to take its place due to the instability and ineffectiveness of RNA.

In the lab, McFarland focuses on using a program called systematic evolution of ligands by exponential enrichment (SELEX), which filters the RNA so she can find which strands do what she’s looking for. Specifically, she’s trying to determine if the RNA can make a reaction happen. If McFarland can find this connection, scientists would see that as support for for the RNA World Hypothesis.

“I’m trying to see which RNAs can perform a catalytic function,” McFarland said. “By doing that, we can kind of start to think about how RNA used to function in early earth.”

Her typical day starts at 9 a.m. when she heads to Bond LSC to get her experiments set up for the day.

“I go to class while they’re incubating,” McFarland said. “My science allows me to set stuff up and have a break while it’s running. I’m usually running experiments four days a week.”

McFarland was inspired by the work being done in Bond LSC and the analytical way of thinking about experiments.

“[Research] is kind of nailed into you as soon as you step on campus,” McFarland said. “That was the motivating factor, but I came to love it for a lot of reasons. It’s really shaped the way I think about things.”

When she’s not wearing her lab coat and investigating the origins of life, McFarland spends her time working in environmental efforts at Mizzou.

“I’m really passionate about sustainability in all of its forms: environmental, economic and social,” McFarland said. “I lead the electronic waste drives around campus, and I’m co-directing sustainability week this year.”

McFarland is also a co-president of the biochemistry club.

“In our meetings, we bring in grad students and faculty to talk about career options, so everyone can ask questions,” McFarland said. “We also do fun events. Last night, we had a biochemistry-themed breakout room. They had to balance chemical equations and transcribe and translate a DNA sequence to spell out a word. We have a lot of fun with it.”

All of her work in the lab in combination with her research at Bond LSC has only strengthened her bid for her next endeavor: medical school.

“I’m passionate about communicating science, and I think medicine would allow me to do that,” McFarland said. “I like the idea of radiology because it allows you to look at an image, or data, then think through things on your own, which is a lot like research.”

If she doesn’t end up at medical school, McFarland would like to continue to pursue education. She could see herself attending graduate school.

“I’m interested in a master’s in public health,” McFarland said. “It would allow me to expand my knowledge of science and how it relates to health beyond the scope of the lab.”

Regardless of if she continues to learn through medical or graduate school, though, McFarland credits research for having an immense impact on her career.

“Research has really shaped the way I think about things,” McFarland said.

Makenzie Mabry #IAmScience

Makenzie.jpg

Makenzie Mabry, a Ph.D. candidate, works in the Pires Lab in Bond LSC. | photo by Allison Scott, Bond LSC

For Makenzie Mabry, every day is a new puzzle when it comes to science.

That desire to solve new problems led her from wanting to be a veterinarian to considering much less cuddly focus in plants.

“I think the beautiful thing about research is that it evolves itself,” Mabry said.

Although she had an acceptance letter to vet school in tow, she altered her career path to work with a new passion: plants. That led her from California to the lab of Chris Pires at Bond LSC.

“I did all of my undergraduate studies [at San Diego State University] with a vet school plan,” Mabry said. “I took a class my senior year talking about plants — Taxonomy of California Plants — with a great professor [Dr. Michael Simpson], and he really sold me on how unique plants are. They break all the rules.”

With vet school no longer in her plans, Mabry volunteered to work with Dr. Simpson and learn as much about plants as she could.

“I was all ready for vet school and I emailed him a week after I was supposed to start to volunteer,” Mabry said.

After two years of volunteering, Mabry began working toward a master’s degree. During that time, she studied a plant native to her home state of California, Cryptantha. She also studied those which occur in Chile and Argentina by visiting both countries.

“That fueled my passion for research,” Mabry said.

However, it wasn’t until five years ago that Mabry met Chris Pires at a conference in Columbus, Ohio.

“He was very energetic and I had just started learning about polyploidy [which Pires studies]. Three years later, he somehow convinced me to move from California to Missouri,” Mabry said. “I really enjoy the work I’m doing here, and it was a good decision.”

Now as a third year in Pires’ lab at Bond LSC, Mabry uses Brassicales — a family of plants that range from papaya to Brussel sprouts — to explore the multiple genomes of plants. She enjoys her lab work, analyzing data and getting to know the plants.

“Learning the subtle differences between them — whether branches are really close together or their leaves are clustered — is key,” Mabry said. “Being able to account for those differences might mean a lot for being able to find genes that are responsible for them. You have to know what those differences are to know what genes are responsible for it.”

Specifically, Mabry tries to understand how polyploidy — when an organism duplicates their genome to end up with two or more sets of chromosomes — comes about and what impact it has on plant species.

“We want to prove that polyploidy can lead to adaptive variation,” Mabry said. “It can be two different species forming a hybrid, and they keep all of their chromosomes, or a single species that doesn’t go through reduction. That’s the major question our lab is focusing on.”

These extra chromosomes can potentially give a plant new traits that help them react better to the environment or reproduce better without compromising essential plant functions. There are complexities to polyploidy that make deciphering its existence difficult, though. For instance, they’re trying to uncover why certain genes are kept and others aren’t.

“There’s evidence that there’s one genome that’s dominant to the other,” Mabry said. “Polyploids have a larger gene size, so that helps them accommodate.”

And, as a result, Mabry’s research requires coding skills.

“If you want to be successful you need to know how to code. You at least need to know what data is put in and what comes out,” Mabry said. “In the next 10 years, I think it’s going to be even more of a part of the undergraduate curriculum – it’s going to have to be.”

Luckily, Mabry doesn’t work alone.

“I’m really grateful because I have four amazing undergrad students who work with me,” Mabry said. “I could not do it without them. They all have individual projects that they are responsible for and it is very rewarding to watch them succeed in writing grants, presenting their work, and getting results.”

Ultimately, though, the undergraduates she works with are a big reason why she envisions herself in academia.

“Mentoring — that’s what keeps me going every day,” Mabry said.

Kris Budd #IAmScience

KRIS2.jpg

Kris Budd, a Ph.D. candidate in Lori Eggert’s lab, works with Bond LSC to track elephant DNA in Southeast Asia. | photo by Allison Scott, Bond LSC

“#IAmScience because I have the ability to transform the fate of endangered species.”

If someone had told Kris Budd that she’d be investigating elephant feces on daily basis in her Ph.D. program, she wouldn’t have bought it. If they’d said she’d realize it’s a passion of hers, she would’ve been in shock.

As a third year Ph.D. candidate in Lori Eggert’s lab, Budd is able to do meaningful work that is helping endangered elephants through feces.

“I always wanted to work with an endangered species,” Budd said. “I’ve always been excited about this, and the more you find out about elephants, the more you love them.”

Budd receives samples of elephant dung from Southeast Asia, and singles out the elephant DNA from the other species present in the sample — most commonly microbes and insects, but sometimes even goats and humans.

“You have to be aware that there can be DNA from anything that walked by that day,” Budd said. “We have to use specific tools to make sure we just get the elephant DNA.”

“After processing, we use the DNA Core Facility in Bond LSC, which isn’t an easy task since we typically run hundreds of samples several times for a single study.” Budd said. “But they always do it with grace.”

Budd then uncovers the genetic makeup with the help of the Informatics Research Core Facility (IRCF) and meetings with members of Chris Pires’ lab in Bond LSC.

From there, Budd is able to input the DNA into a system and keep track of the elephants overseas. They, however, become way more than numbers to her.

“They might just be a sample in your data, but you get to know the elephants,” Budd said. “Elephants are so much more. There are so many different elements to them — genetics, behavior, and ecology. Their evolutionary history and family structure tells a story, all seen through feces.”

Her work is about to get a lot more hands-on next semester, as Budd will be traveling overseas to collect samples herself.

“We’re going in the spring and we’ll teach local technicians how to go about collecting samples,” Budd said. “We’ll collect a lot of samples of our own while we’re there, too.”

Budd will be able to determine what is happening with the elephant populations in Southeast Asia more closely then.

“There’s a big push with critically endangered species to translate data into something that can help them,” Budd said. “The samples I’m working on from Myanmar are actually an extinct population, but we want to re-wild similar elephants in the same location.”

Essentially, that would require Budd to find a genetically similar elephant population that would be most likely to thrive in the same environment.

While actually implementing the re-wild process won’t happen for a while, Budd is certain about the influence of Bond LSC in the elephant re-wilding’s future success.

“My work wouldn’t be possible without the people who work at Bond LSC,” Budd said.

Lisa Caesar #IAmScience

LISA1.jpg

Lisa Caesar is a biological sciences Ph.D. candidate who works in Laura Schulz’s lab. | photo by Allison Scott, Bond LSC

“#IAmScience because education and my pursuit of learning became my ticket out of poverty and a way that I can really help others.”

“Mother knows best” rings true for Gerialisa Caesar. In her family, the career options were either to be a lawyer, engineer or doctor.

But with little interest in law and a greater love for science than math, Caesar decided to pursue her doctorate.

“I graduated high school at 16 fully equipped to enter the work force,” Caesar said. “I went back to school to study science because my mom basically told me I had to, but biology fit me really well, so it worked out.”

Initially, Caesar was hesitant that she could even become a scientist.

“I had an idea of what a scientist was, and it wasn’t me,” Caesar said. “After I immigrated from Guyana, my undergraduate advisors, Drs. Carroll and Catapane, explained the opportunities I had to study biology. It opened the world of possibilities for me to pursue science.”

Now, as a biological sciences Ph.D. candidate in Laura Schulz’s lab, Caesar focuses on women’s health and reproductive biology.

“My research is to understand how a mother’s nutrition prior to and during pregnancy affects the baby’s development,” Caesar said. “This is important as several studies link maternal diet during pregnancy to an increase in susceptibility of the offspring developing diseases such as obesity, diabetes and hypertension in adulthood.”

That includes connecting how mother’s diets cause fetal health issues, which is a highly debated topic.

“For example, a lot of women are told to take folic acid pills during pregnancy,” Caesar said. “Doing that has been tied to help with neural development concerns — things like spina bifada [a birth defect that affects developing babies’ spinal cords]. Understanding the mechanisms that make that occur would aid in developing better interventions to prevent such occurrences.”

As a result, Caesar’s research has the ability to help the world’s greatest health concerns in an impactful way.

“My work is directly contributing to prevent health issues that exist for future generations,” Caesar said. “Knowing that is motivating.”

After she earns her Ph.D., Caesar would love to work for the Center for Disease Control and Prevention.

“The CDC has immediate response teams that react to major disease concerns. Being a part of that would be incredible,” Caesar said. “There’s something about working for the CDC and being able to have a meaningful impact within the community that calls me.”

Caesar plans to channel that passion regardless of where she ends up, though.

“Biology is literally the study of life,” Caesar said. “As much as I thought science was challenging, I am able to see how it affects everyday life. I have a purpose, and I know what I do is going to make a difference.”

Julia Brose #IAmScience

Julia2.jpg

Julia Brose is a senior studying biochemistry at Mizzou. She works in Chris Pires lab in Bond LSC. | Photo by Allison Scott, Bond LSC

“#IAmScience because I really enjoy discovering and being around people who cultivate a positive learning environment.”

As a freshman at Mizzou four years ago, Julia Brose knew she had a love for plants. That, however, competed with her fascination with biochemistry.

Luckily, she found and was selected for FRIPS, Freshman Research in Plant Sciences, which allowed her to do both. The program is made up of 10 freshman each year who gain valuable hands-on research experience with plants.

“I started working in Bond LSC, and that’s really where I found my love for research,” Brose said. “Working with plants allowed me to explore that interest, while still majoring in biochemistry. I have the best of both worlds.”

Her degree in biochemistry coupled with her research experience has given her a number of unique opportunities. One of which was being a Cherng Summer Scholar at Bond LSC last summer where she studied plants and their protein makeup.

“I was looking at amino acids, which are the building blocks of proteins in plants,” Brose said. “Specifically, I was looking for the content in seeds within Brassica, a species that includes cauliflower and kale.”

Another unique opportunity Brose earned was in summer of 2016. She worked at Stanford University as part of a fellowship for the American Society of Plant Biologists.

“I studied novel plant defense compounds —how plants protect themselves,” Brose said. “People can move around and gain protection that way, but plants need different chemicals to protect themselves.”

Her background in biochemistry and her experience with plant research at Bond LSC in Chris Pires’ lab provided her with the ability to analyze the defense structures in a unique way. As a result, she uncovered something that others had either ignored or overlooked.

“I found that the chemicals we see in leaves are in roots, too,” Brose said. “No one else had looked there before, so it was cool to be the first.”

Her work at Stanford led them to send her to a conference in Hawaii earlier this year. While there, Brose was able to present a poster on her findings as well as network with a number of successful scientists in a variety of fields.

As she nears graduation this spring, Brose has begun looking into graduate school options. Those are largely based upon the experience she had in Hawaii.

“I was able to make connections that have influenced my plans for the future as far as where I’m applying to graduate school,” Brose said.

Wherever she ends up, Brose hopes to teach.

“I like mentoring students and being around a learning environment,” Brose said. “That is really fostered in a university.”

Marianne Emery #IAmScience

MarianneFINAL.jpg

Marianne Emery is a Ph.D. candidate in Ruthie Angelovici’s Lab in Bond LSC. | photo by Allison Scott, Bond LSC

“#IAmScience because it leads to innovation that makes for a better world, which is an awesome thing to be a part of.”

It’s good to have a role model, and Marianne Emery has always looked up to female pioneer scientists.

One of her favorites is Barbara McClintock, a Nobel prize winning botantist who studied how the chromosomes of corn change during reproduction.

It is from women like McClintock that Emery is encouraged to always be impactful with her research and overcome obstacles with grace.

“I think it’s inspiring to see these women in positions that have typically been male-dominated,” Emery said. “You lose your confidence sometimes when things just don’t work. You’re continuously met with obstacles, but you have to keep going.”

And that she has.

Emery works in Ruthie Angelovici’s lab at Bond LSC to understand what controls protein levels in seed. She primarily spends her time on the computer working with large data sets and trying new software, but is always excited about the findings she’s able to uncover.

“I enjoy developing new skill sets every day,” Emery said. “The most important thing I’ve learned so far is how to communicate my science and how to communicate when I’m having an issue. Conveying a problem and problem-solving in general can be hard.”

Still, Emery continues to focus on improving on a daily basis. She hopes to work for a company like Monsanto after earning her Ph.D.

“I really like the business side of science,” Emery said. “Ultimately, a bigger company would be the best fit. I also really like policy and the patenting process.”

Wherever Emery ends up, though, she hopes to become like the women who pioneered science.

“Female scientists have been so inspiring to me,” Emery said. “I hope that one day I can be a leader and a role model for other young women who aspire to be involved with science.”

Vivek Shrestha #IAmScience

Vivek Shrestha

Vivek Shrestha, a Ph. D candidate, works in Dr. Ruthie Angelovici’s lab at Bond LSC. | photo by Allison Scott, Bond LSC

“#IAmScience because it provides me with a platform to make that which seems impossible possible.”

Agriculture is a mainstay in Nepal, where Vivek Shrestha was born and raised. He grew up in a small farming family, but he was surprised that although a significant portion of the country was involved with agriculture, food insecurity was prevalent.

“Nepal is a small, developing nation that is naturally beautiful,” Shrestha said. “Agriculture is huge, but still a lot of people are food insecure.”

Shrestha saw this need and decided to study plant sciences as an undergraduate at Tribhuvan University in Nepal. From there, he earned his master’s degree from South Dakota State University before coming to Mizzou to pursue his Ph.D.

“The overall goal of my study is to understand the genetic architecture of seed amino acid composition,” Shrestha said. “Seed amino acid composition is a complex metabolic trait and, despite having tremendous importance in biofortification efforts in seed crops, the underlying genetics are not clearly understood.”

Currently, Shrestha works in Dr. Ruthie Angelovici’s lab at Bond LSC studying the trait to better grasp its genetic breakdown.

“The {research} quality of amino acids has a tradeoff with the quantity, which makes it more challenging,” Shrestha said. “However, our research is of paramount importance because it has millions of beneficiaries.”

Shrestha’s research helps not only with food stability in places like Nepal, but also in cutting costs for the livestock feed industry in developed nations like the United States.

“Maize is a huge part of the feed industry for the United States,” Shrestha said.

This dual interest makes Shrestha’s work that much more rewarding. Although the amino acids are complex — having multiple cellular processes and interactions — the complexity gives Shrestha motivations and excitement in what he does.

“Every day is a fresh, new day for me to explore and enjoy science,” Shrestha said.

Ronnie LaCombe #IAmScience

Ronnie LaCombe

Ronnie LaCombe, a Ph. D candidate in biological sciences at MU, stands near her lab station in D Cornelison’s lab in Bond LSC. | photo by Allison Scott, Bond LSC

By Allison Scott | Bond LSC

“#IAmScience because I feel most alive when I’m talking to people, both in and out of my field, about my work.”

While other kids were playing with Legos and dolls, Ronnie LaCombe was exploring the world through a microscope.

Alongside her cousins, LaCombe used science at an early age as both a way of learning and for entertainment.

“I’ve always wanted to be a scientist,” LaCombe said. “In third grade I told everyone I was going to be planetologist — a scientist who studies planets. Although that didn’t pan out, I guess I always knew science was the path for me.”

Years later she’s working in D Cornelison’s lab studying protein interactions in cells of rhabdomyoscarcoma, a form of childhood cancer. Specifically, the fifth-year biological sciences Ph.D. candidate is trying to uncover why a protein that’s typically on the outside of a cell is located inside the nucleus in this form of cancer.

“I was looking at the cells and saw that this protein was in the nucleus and not on the outside,” LaCombe said. “At first, I thought it was fake. I followed up on it, and it ended up being something potentially significant.”

After noticing the unusual location of the protein in the cell, LaCombe and others in her lab looked into other species to see if it existed in them, too. When they saw the structure was the same in both dogs and mice they knew it meant something.

“We were jumping up and down once as we saw it was in three different species,” LaCombe said. “That validated what we had thought earlier about it being something significant and not a mistake.”

Now, the lab’s test is to figure out why the protein is there and if it’s functioning the in the same way it would if it were outside of the cell.

“Cells touch each other and talk to each other through the proteins on the outside of the cell,” LaCombe said. “We’re trying to figure out what the protein is doing since it’s in the nucleus rather than at the surface.”

At this point, they’re still looking into how this is possible and what it means for this type of cancer.

“The hope is to figure out a method that can be used in other forms of cancer,” LaCombe said.

Until that solution is discovered, LaCombe is happy to put the puzzle together piece-by-piece.

“Research is like one very long, often very difficult, puzzle that you don’t always have all the pieces to,” LaCombe said. “I enjoy the challenge, though, and the difficulty of it makes solving the puzzle even more satisfying.”

Katy Guthrie #IAmScience

Katy Guthrie

Katy Guthrie, a Ph.D. candidate, works in Dr. Paula McSteen’s lab in Bond LSC. | photo by Allison Scott, Bond LSC

By Allison Scott | Bond LSC

“#IAmScience because I want to take the knowledge I gain and teach it to other young scientists so they share in this excitement, too.”

Katy Guthrie grew up as one of five girls. All five sisters took very different paths —one ended up in hospital management, another in marketing and advertising, one became an engineer and the other works in logistics for a start up.

But Guthrie took a different route.

Her love of science started long before she enrolled in classes at Northwest Missouri State University, but there she discovered her true love of plants. Guthrie took a required botany class, and less than a week into the course she was hooked.

“All biology students had to take zoology and botany,” said Guthrie. “I had an awesome botany professor second semester of my freshman year — her enthusiasm for the subject was captivating — and she and I developed a great relationship. It was in that class I discovered that plants are what I want to study for the rest of my life.”

As part of Dr. Paula McSteen’s lab, Guthrie studies the reproductive organs of maize and how its genes allow it to produce flower-bearing structures in pairs, while other plants only produce these structures singly.

“If you count the number of rows on a corn cob, it’s always even,” Guthrie said. “That’s because maize produces two flowers at a time instead of one. My research is essentially trying to figure out which genes are responsible for that doubling trait.”

It’s not an easy process, though, so Guthrie nurtures a unique approach to finding the solutions.

“I take ears of corn that make one flower-bearing structure and work backwards to try and find what’s missing,” Guthrie said. “If I can find that, I can assume that’s what’s making the difference.”

Although her work can be painstaking, Guthrie noted that science is all about learning from mistakes.

Ultimately, Guthrie wants to duplicate the gene that causes the doubling trait in other crops, such as rice, wheat and barley. This could have a big impact on cereal crop reproduction.

“We’re hoping to apply what we learn about maize other crops,” Guthrie said.

After finishing her studies at Mizzou, Guthrie plans to return to the classroom as a professor, preferably teaching undergraduates.

“The whole reason I decided to go to graduate school was to be able to teach,” Guthrie said. “I want people who aren’t necessarily interested in science initially to get invested in it. I also want to incorporate research into the classes I’ll teach because not every college is a research campus like Mizzou.”

Vinit Shanbhag #IAmScience

Vinit Shanbhag

Vinit Shanbhag is a Ph.D. candidate in biochemistry and works in Michael Petris’ lab in Bond LSC. | photo by Allison Scott

By Allison Scott | Bond LSC

“#IAmScience because I like to discover. The excitement of uncovering things that could have an impact on millions of lives is fascinating.”

Vinit Shanbhag isn’t your typical student. His extensive background both overseas in India and at the Florida Institute of Technology serve to prove just that and prepared him for his next adventure at Mizzou.

“When I came here for the on-campus interviews, the department was impressive,” said Shanbhag, who is pursuing a Ph.D. in biochemistry. “The excellent infrastructure, paradigm-shifting research and challenging educational environment influenced my decision to attend MU.”

Shanbhag intentionally joined the lab of Michael Petris at Bond LSC to further his experience.

“I was particularly interested in joining the Petris lab due to my immense interest in cancer research,” Shanbhag said. “That interest has now evolved into an aspiration to pursue a career in the field.”

There he studies how an essential dietary nutrient copper is required for the process of tumor formation and metastasis. In a specific study he has deleted a copper-transporting gene (ATP7a) in cancer cells and demonstrated a defect in their ability to grow into larger tumors and spread to other organs in animals.

“By understanding the mechanisms that regulate key processes in cells, one can distinguish between the normal and diseased,” Shanbhag said. “Uncovering these differences at the molecular level is key to the development of novel clinical interventions.”

Shanbhag’s work has been recognized as he was invited to present his research at the Gordon Research Seminar in Vermont earlier this year. While there, he shared the work he’s been doing in his lab and gave a presentation, in addition to showcasing a poster detailing his work.

“People were impressed,” Shanbhag said. “After my talk people came up and asked me questions. Our observations are very interesting and the goal is to develop a drug that could potentially block the function of ATP7A and inhibit cancer progression. The people I spoke with encouraged us to keep going.”

Although he’s presented at departmental seminars, this recognition stands out as a great experience for Shanbhag.

“This was my first invited talk,” Shanbhag said. “I applied for it and got the news of my invite pretty quickly, so I was excited.”

The hope is that Shanbhag’s research will serve as the premise for further development in understanding and eventually eliminating cancer.

“Ultimately, I hope to discover new ways to kill cancer cells and provide cost-effective treatment options for cancer patients,” Shanbhag said.