#IAmScience

Katy Guthrie #IAmScience

Katy Guthrie

Katy Guthrie, a Ph.D. candidate, works in Dr. Paula McSteen’s lab in Bond LSC. | photo by Allison Scott, Bond LSC

By Allison Scott | Bond LSC

“#IAmScience because I want to take the knowledge I gain and teach it to other young scientists so they share in this excitement, too.”

Katy Guthrie grew up as one of five girls. All five sisters took very different paths —one ended up in hospital management, another in marketing and advertising, one became an engineer and the other works in logistics for a start up.

But Guthrie took a different route.

Her love of science started long before she enrolled in classes at Northwest Missouri State University, but there she discovered her true love of plants. Guthrie took a required botany class, and less than a week into the course she was hooked.

“All biology students had to take zoology and botany,” said Guthrie. “I had an awesome botany professor second semester of my freshman year — her enthusiasm for the subject was captivating — and she and I developed a great relationship. It was in that class I discovered that plants are what I want to study for the rest of my life.”

As part of Dr. Paula McSteen’s lab, Guthrie studies the reproductive organs of maize and how its genes allow it to produce flower-bearing structures in pairs, while other plants only produce these structures singly.

“If you count the number of rows on a corn cob, it’s always even,” Guthrie said. “That’s because maize produces two flowers at a time instead of one. My research is essentially trying to figure out which genes are responsible for that doubling trait.”

It’s not an easy process, though, so Guthrie nurtures a unique approach to finding the solutions.

“I take ears of corn that make one flower-bearing structure and work backwards to try and find what’s missing,” Guthrie said. “If I can find that, I can assume that’s what’s making the difference.”

Although her work can be painstaking, Guthrie noted that science is all about learning from mistakes.

Ultimately, Guthrie wants to duplicate the gene that causes the doubling trait in other crops, such as rice, wheat and barley. This could have a big impact on cereal crop reproduction.

“We’re hoping to apply what we learn about maize other crops,” Guthrie said.

After finishing her studies at Mizzou, Guthrie plans to return to the classroom as a professor, preferably teaching undergraduates.

“The whole reason I decided to go to graduate school was to be able to teach,” Guthrie said. “I want people who aren’t necessarily interested in science initially to get invested in it. I also want to incorporate research into the classes I’ll teach because not every college is a research campus like Mizzou.”

Vinit Shanbhag #IAmScience

Vinit Shanbhag

Vinit Shanbhag is a Ph.D. candidate in biochemistry and works in Michael Petris’ lab in Bond LSC. | photo by Allison Scott

By Allison Scott | Bond LSC

“#IAmScience because I like to discover. The excitement of uncovering things that could have an impact on millions of lives is fascinating.”

Vinit Shanbhag isn’t your typical student. His extensive background both overseas in India and at the Florida Institute of Technology serve to prove just that and prepared him for his next adventure at Mizzou.

“When I came here for the on-campus interviews, the department was impressive,” said Shanbhag, who is pursuing a Ph.D. in biochemistry. “The excellent infrastructure, paradigm-shifting research and challenging educational environment influenced my decision to attend MU.”

Shanbhag intentionally joined the lab of Michael Petris at Bond LSC to further his experience.

“I was particularly interested in joining the Petris lab due to my immense interest in cancer research,” Shanbhag said. “That interest has now evolved into an aspiration to pursue a career in the field.”

There he studies how an essential dietary nutrient copper is required for the process of tumor formation and metastasis. In a specific study he has deleted a copper-transporting gene (ATP7a) in cancer cells and demonstrated a defect in their ability to grow into larger tumors and spread to other organs in animals.

“By understanding the mechanisms that regulate key processes in cells, one can distinguish between the normal and diseased,” Shanbhag said. “Uncovering these differences at the molecular level is key to the development of novel clinical interventions.”

Shanbhag’s work has been recognized as he was invited to present his research at the Gordon Research Seminar in Vermont earlier this year. While there, he shared the work he’s been doing in his lab and gave a presentation, in addition to showcasing a poster detailing his work.

“People were impressed,” Shanbhag said. “After my talk people came up and asked me questions. Our observations are very interesting and the goal is to develop a drug that could potentially block the function of ATP7A and inhibit cancer progression. The people I spoke with encouraged us to keep going.”

Although he’s presented at departmental seminars, this recognition stands out as a great experience for Shanbhag.

“This was my first invited talk,” Shanbhag said. “I applied for it and got the news of my invite pretty quickly, so I was excited.”

The hope is that Shanbhag’s research will serve as the premise for further development in understanding and eventually eliminating cancer.

“Ultimately, I hope to discover new ways to kill cancer cells and provide cost-effective treatment options for cancer patients,” Shanbhag said.

Sterling Evans #IAmScience

SterlingEvans_final

Sterling Evans is a sophomore plant sciences major conducting research in Gary Stacey’s lab in Bond LSC. | photo by Allison Scott

By Allison Scott | Bond LSC 

“#IAmScience because I want to focus my research on problems that exist in agriculture in undeveloped and third world countries.”

Sterling Evans’ mind wasn’t focused on research when he started college, but that would soon change.

The sophomore plant sciences major uncovered his interest thanks to Freshman Research in Plant Sciences (FRIPS) — a program dedicated to introducing research to freshman students from plant-related degree programs.

“I was interested in plant sciences-related fields when I started here, but I had no intention of getting involved in undergraduate research,” Evans said. “Being selected for FRIPS was instrumental in getting me involved with research.”

Along with a handful of students selected for FRIPS each year, Evans got to interact with various professors and mentors around campus on a weekly basis. Because of that exposure, Evans found a place in the lab of Bond Life Sciences Center’s Gary Stacey.

After a year working in Stacey’s lab, Evans just joined a new project that aims to improve the nutritional value of soybeans.

“They’re used as a main source of protein for a lot of countries, so improving their nutritional content would have a huge impact,” Evans said.

The team is applies CRISPR, a gene-editing tool, to model plants called Arabidopsis as a first step.

“We are working on Arabidopsis right now as a proof of concept, because it can be done in a relatively short period of time, before investing as much as a two additional years in soybeans,” Evans said.

While he only spends 15 hours in the lab each week, Evans noticed the lab’s impact on his approach to academics in other ways.

“Research gives me more motivation to think about how to apply information I’ve learned in class to work in the lab,” Evans said. “It has made me more analytical in classes because I have more of a desire to understand things.”

Evans plans to earn a Ph.D. in a plant sciences field and wants to continue research in his career. He’s most interested in helping ensure small communities throughout the world have enough to eat, and he hopes to contribute by studying orphan crops.

“I think they’re cool because they’re really important to small people groups. No one studies them because they aren’t a big deal in the United States or other countries,” Evans said. “If we work on them we won’t have a huge impact on hundreds of millions of people, but we will have a huge impact on small communities.”

That impact all started in a lab. Had he not stepped out of his comfort zone he might never have discovered this path, and he highly encourages other students to give research a chance.

“There are labs for almost everything and there’s an area for everyone,” Evans said. “I didn’t know I wanted to do research until I did it.”

Paul Caldo #IAmScience

Paul Caldo

Paul Caldo is studying both biomedical sciences and developmental psychology. He works in Dr. Cheryl Rosenfeld’s biology lab in Bond LSC. | photo by Allison Scott

By Allison Scott | Bond LSC 

“#IAmScience because research allows me to challenge my understanding of the world around me and strive toward figuring out the unknown.”

Paul Caldo isn’t your typical undergraduate student. As a junior, Caldo is double majoring in Biology and Psychology, which gives him a unique perspective on science as a whole.

It is in the overlap between his majors, however, that most interests him.

“I am fascinated with development in both psychology and biology because the early stages of life lay the foundation for who and what you will become,” he said. “I have an appreciation for all spheres of academia, and it is becoming more evident to me that an interdisciplinary approach to research will lead to more and more breakthroughs in science.”

As a member of both Dr. Cheryl Rosenfeld’s biology lab in Bond LSC and Dr. Ashley Groh’s psychology lab in Noyes Hall, Caldo gets the best of both worlds while studying the fields he loves. In Rosenfeld’s lab, he’s currently analyzing how endocrine disruptors – which are found in everyday products like sunscreen – impact the development of reproductive organs in female mice.

“By understanding the underlying mechanisms that drive this interaction, our goal is to potentially reverse some of the harmful effects that result from heavy exposure to endocrine disruptors,” Caldo said.

His efforts have not gone unnoticed. Caldo was selected to join an ASH Scholars undergraduate team mentored by Dr. Grohl and collaborator Dr. Amanda Rose. The ASH Scholars program, which provides a $2000 scholarship, is sponsored by the Honors College and the Office of Undergraduate Research. He also received a $200 travel grant that will allow him to present his findings at the Developmental Origins of Health and Disease Conference in Detroit later this month.

“I’m really excited about the travel grant to Detroit,” Caldo said. “It will be my first time attending a national-level conference. I hope to benefit from presenting my work as well as learning from many great scientists from across the country. I think it will be a really enriching experience, and I hope to take away a lot from it.”

After graduation, Caldo hopes to attend graduate school to study developmental psychology using an interdisciplinary bio-behavioral approach to answer research questions. Ultimately, his plan is to earn a PhD in developmental psychology. Until then, though, he’s enjoying his time at Bond LSC learning as much as possible.

“The ambiance is great – working closely with some of the best researchers on campus is an amazing feeling,” Caldo said.

Katelynn Koskie #IAmScience

IAMSCIENCE final template_Katelynn.jpg

Katelynn Koskie, a Ph.D candidate, works in Mannie Liscum’s lab. | Photo by Samantha Kummerer, Bond LSC

By Samantha Kummerer | Bond LSC

“#IAmScience because I want to help unravel the mysteries of nature that will improve our futures and positively impact our planet.”

Katelynn Koskie didn’t always know she loved plants. As an undergraduate, she focused on what was above her rather than what grew below her.

“I was really interested in how galaxies interact and then I started to think, ‘you know I’ve always thought plants were really, really cool,’ and I wanted something that was a little bit more down to earth,” she said.

While she was pursuing a degree in astrophysics, she took one plant biology course and fell in love. From there she signed up for grad school and has been with plants ever since.

Koskie works with a mutated plant called hyper phototrophic hypocotyl, hph. The mutation is a variation of the lab’s model plant Arabidopsis. This variation is special. It produces more seeds, bends more under light and is stronger. It’s up to Koskie to figure out why.

That answer could have a large impact on the agriculture industry. If Koskie’s findings can be applied to crop plants like maize, farmers can grow better crops.

“Maize is more complicated than Arabidopsis, but with new techniques like CRISPR/CAS9 now it might make it a little bit easier,” she said.

She plants genetically modified seeds and then waits and observes and begins again.

It is a lot of time in the growth chamber and in the dark room, hoping the research may reveal a breakthrough.

Beverly Agtuca #IAmScience

Beverly Agtuca

Beverly Agtuca, a Ph.D. candidate that works in Dr. Gary Stacey’s lab in Bond LSC. | photo by MJ Rogers

Beverly Agtuca was born in New York, but has family in the Philippines, a country that struggles with malnutrition and undernourishment. Her overall goal for her research is to help countries that struggle with undernourishment by increasing the agricultural productivity in those countries.

“When I was little, I went on summer vacation to visit my family, which included my grandmother in the Philippines,” she said. “Everyday my grandmother wanted me to go out to the rice fields from 5 a.m. to 10 p.m. with the other children to get rice for our meals. That was not an easy task and that moment changed my life. That’s when I decided that I wanted to be a plant scientist.”

Agtuca graduated in 2014 with honors in Biotechnology and a minor of Microscopy from the State University of New York College of Environmental Science and Forestry (SUNY ESF) in Syracuse, NY. She’s currently a Ph.D. candidate in plant breeding, genetics, and genomics at MU. She chose to come to Bond LSC because of the community and Dr. Stacey, her supervisor and mentor.

“If you ever need help, there’s always help here,” she said. “Everyone at Bond LSC is so kind, including the staff. I love to make small talk with the custodians and they are always supporting me and say I should never give up when I have a bad day.”

Ever since coming to MU in 2014, Agtuca has been keeping busy. In June, she received a travel award to go to the American Society of Plant Biologists (ASPB) in Hawaii. The International Society for Molecular Plant-Microbe Interactions (IS-MPMI) also awarded her a travel award to attend the 2016 meeting in Portland, Oregon, where she gave an oral and poster presentation. She also has two original research publications under her belt and is currently working in Dr. Gary Stacey’s lab at Bond LSC.

The research for her dissertation is focused on the relationship between rhizobia and soybeans. She collaborates with scientists at George Washington University (GWU) in Washington, D.C. and the Pacific Northwest National Laboratory (PNNL) in Richland, Washington to enhance the capabilities of the 21 Tesla Fourier transform ion cyclotron resonance mass spectrometer (21T FTICR) through application of laser ablation – electrospray ionization mass spectrometry (LAESI-MS) technology that can analyze the contents of single plant cells. This 21T FTICR machine was recently installed at PNNL and represents one of only two such machines in the world.

This is revolutionary because few people do single cell analysis. Usually, scientists deal with the law of averages, which dilutes the final measurements. But this technology gives an in-depth glimpse into a single cell so scientists can obtain a more comprehensive bigger picture.

“After we finish building this technology, we want to spread the technique to different research groups so they can answer these research questions on their own,” said Agtuca. “It can help people outside of plant sciences too, and hopefully will help with cancer treatment and disease prevention.”

Samuel McInturf #IAmScience

Samuel McInturf, Ph.D. candidate

Samuel McInturf, Ph.D. candidate

#IAmScience because it’s fun. You’re paid to work with exotic materials and instruments to solve problems that drive at how life manifests.”

Samuel McInturf’s father is an accountant and his mother is an HR director, but somehow he ended up falling in love with science. By the 4th grade he had already asked his parents to buy him a compound microscope. He completed his undergraduate degree in plant biology at University of Nebraska, Lincoln with a minor in biochemistry. Now, he’s finishing up his fifth year pursuing a Ph.D in plant stress biology and works in Dr. David Mendoza-Cózatl’s lab at Bond LSC.

“I mainly came to Bond LSC to work with Dr. Mendoza,” said McInturf. “The work in his lab was right in line with what I wanted to do and I knew the faculty at Bond LSC was great.”

And he’s enjoyed the last five years he’s spent here.

“Bond LSC has vast resources of knowledge and labs are very friendly towards one another,” he said. “So if you are short up on a reagent, or you need to learn to do an assay, someone is always available to lend a hand.”

McInturf’s thesis deals with understanding the genetic factors that balance the uptake and demand for micronutrients – heavy metals – against their toxicity. He specifically looks are regulators of iron and zinc homeostasis.

In addition to his interest in plant biology, he’s also an engineer of sorts. McInturf helps teach a bioengineering class at Bond LSC with undergraduates. The goal of the class is to build robotics that aid laboratory research, and he has taught three of these classes so far.

“I found the change in scale between building widgets in my bedroom to building full scale devices challenging, but ultimately rewarding,” he said.

For undergraduates interested in continuing a career in science, McInturf advises them not to give up, even when things get tough. He admits that he was intent on dropping out of school up until he was 18, but now he’s almost finished with his Ph.D.

“Ten years ago I was very intimidated by what I saw as the difficulty of science and was wavering on whether I wanted to take the dive into a research-heavy field,” he said. “It took a few years to figure that out, so I guess I would have told myself to get a move on and not be so faint hearted about it.”

McInturf isn’t positive where he’s like to be in 10 years, but he’d enjoy continuing to teach and conduct research at a university like MU.

“I’d love to have Dr. Mendoza’s job one day,” he laughed.

Megan Sheridan #IAmScience

Megan Sheridan

Megan Sheridan, a Ph.D candidate in biochemistry, works in Dr. Michael Robert’s lab. | Photo by Mary Jane Rogers, Bond LSC

By Mary Jane Rogers | Bond LSC

“#IAmScience because it’s extraordinary knowing that a small step towards a treatment could positively impact someone’s life down the road.”

Megan Sheridan doesn’t let anything slow her down.

From presenting at the Society for the Study of Reproduction’s Trainee Research Competition last week—and winning first place—to finishing up her thesis while working in Dr. Michael Roberts’ lab, she’s always juggling multiple projects. Sheridan is finishing up a Ph.D in biochemistry and hopes to graduate in December 2017 or May 2018, depending on how quickly she finishes writing her thesis.

“I was lucky enough to pick up a project studying Zika virus infections early in pregnancy,” she said. “It was one of those perfect timing moments, and we ended up getting some pretty exciting results off the bat. Now I’m really inspired by the direction my thesis work is going and find that my projects are very different but that makes things exciting.“

Sheridan’s thesis focuses on using stem cells as a model for early placenta development and how preeclampsia and viral infections like Zika impact a pregnancy. Preeclampsia is a condition during pregnancy that causes high blood pressure and protein in the urine. The disease likely occurs in the first trimester, but the symptoms don’t evolve until the 2nd or 3rd trimester. To study it, Sheridan uses stem cells generated from umbilical cords of babies born to mothers experiencing preeclampsia or a normal pregnancy, and then uses those cells to determine what defects in the placenta might contribute to the disease preeclampsia.

“I would like to learn as much as possible about the placenta and human pregnancy,” she said. “There are so many unknowns in this area of research because you can’t access the placenta during a pregnancy without disrupting the pregnancy. There are many complications that effect the mother and baby, and if more was known about normal placenta development in pregnancy, then we may be able to better understand and prevent some of those complications.”

Sheridan completed her undergraduate degree at MU, and urges undergraduates to get started in research early, as she believes it gives students a stronger foundation for graduate school. She also believes that mistakes are part of the research process, and wasn’t afraid to share one that she made early on in the Ph. D program.

“I remember in my very first rotation as a graduate student I was learning how to transfect cells with DNA so we could do a reporter assay. We were in the process of adding all the reagents, and between the student I was working with and myself we got confused about who added what,” she laughed. “Somehow, we never added the DNA- an integral part of the transfection! So a week later when we were analyzing the data, we noticed there were no values at all.”

After graduation, Sheridan hopes to experience living outside of Missouri for her postdoc placement. She’d like to stay in academia, and looks forward to continuing to research and teach.

Perhaps one day she’ll even return to MU and Bond LSC!

Kevin Kaifer #IAmScience

Kevin Kaifer

Kevin Kaifer, a Ph.D candidate who works in Dr. Christian Lorson’s lab. | Photo by Mary Jane Rogers, Bond LSC

By Mary Jane Rogers | Bond LSC

“#IAmScience because there are people suffering all over the world and this is where I’m most likely to make any kind of an impact.”

When he came to MU three years ago, Kevin Kaifer knew he wanted to work in Bond LSC. He felt it was where the best science and collaborations were happening on campus, and everything that he needed for his research – a vivarium, a DNA core, and proteomics core – were all conveniently housed here.

“I entered research because I thought the complexity of cellular life is the most fascinating topic in the world,” said Kaifer. “I wanted to be a part of it.”

He completed his undergraduate degree in biology at Truman State University and is currently part of Dr. Christian Lorson’s lab. There, Kaifer is learning transferable skills – everything from communication skills to the production of recombinant gene therapy vectors – all of which will give him a strong foundation for a career in industry.

“The growing promise of gene therapy as a safe and realistic treatment option has led to the start up of many biotech companies that are making really exciting progress,” he said. “This is where I think I will be best able to contribute to science and therapy.”

For undergraduate students who are just getting started in a science field, Kaifer emphasizes that success in science comes and goes.

“In my own personal experience, success in science only comes after a significant set of hurdles,” he said. “You have to be okay with feeling stupid, because part of your job description is to answer questions to which you do not know the answer. I would actually be concerned if you were not struggling to feel successful.”

Christopher Garner #IAmScience

#IAmScience

Christopher Garner, Ph.D, moments before his sucessful dissertation defense. | Photo by Mary Jane Rogers, Bond LSC

By Mary Jane Rogers | Bond LSC

“#IAmScience because I believe that the collective pursuit of scientific knowledge is what moves us forward as a species.”

In the time leading up to Christopher Garner’s dissertation defense, you never would have known if he was nervous. He was confident and composed, and the conference room at Bond LSC was completely filled with his professors, friends and well-wishers. Dr. Walter Gassmann gave a complimentary introduction to the dissertation, saying, “I don’t know if I’ve ever seen a student so prepared.” Needless to say, Garner passed with flying colors.

Garner completed his undergraduate degree at the University of Missouri, St. Louis. After graduating, he went to work on a small R & D team at a St. Louis company. That was his first experience with research and his mentor was influential in persuading Garner to go to graduate school. During graduate school at MU, Garner worked in Gassmann’s lab at Bond LSC, researching the inner workings of the plant immune system. His favorite part of working in the lab was constantly conducting new experiments.

“It’s really satisfying to make a prediction and then see it come true,” said Garner. “It can be equally exciting to see things are radically different than what you predicted.”

His dissertation – “Should I slay or should I grow? Transcriptional repression in the plant innate immune system” – focused on the tradeoffs between growth and defense that plants face when mounting an immune response. While the immune response is essential for the survival of plants in the face of pathogen infection, expression of defense-related genes can interfere with growth and development and must therefore be kept under tight control. His research identified a protein involved in preventing an overshoot of the immune system after it has been activated, thereby contributing new information to the field.

“If there is some way in which I can contribute to the pursuit of scientific knowledge, be it through research or teaching others about science, then I feel like I have done something worthwhile,” said Garner.

Congratulations on a successful defense, Chris!