“#IAmScience because I push through failures knowing that eventually something will work out.”
Breaking things apart and putting them back together has been engrained in Patrick Nittler’s life for as long as he can remember. Growing up, Nittler served as his dad’s sidekick as he salvaged parts of a broken computer to boost performance in their new one. Moments like those were bonding experiences that encouraged the innate curiosity of the now second year molecular plant biology Ph.D. candidate.
Although plants and your run of the mill computer have little in common, Nittler was inspired to follow his interest in how things work.
“I’m a curious person in general, so once I started working with plants I realized it’s something I’m really interested in,” Nittler said.
As part of Mannie Liscum’s lab in the Bond Life Sciences Center, Nittler works on a protein called Nonphototropic Hypocotyl 3 (NPH3) that belongs to a 33-gene member family. This protein is part of the complicated way plants respond to light and the signals that make them grow toward or away from sunlight.
“Right after the photoreceptor in Arabidopsis thaliana receives blue light, it cues a domino effect,” Nittler said. “The protein I study is the next step, and I’m working on characterizing its structure.”
Doing so could help Nittler and his lab to learn more about the rest of the gene family. It could also contribute to his main area of expertise: phototropism, which is how plants perceive and respond to light sources. This can increase the efficiency of photosynthesis by orienting the leaves of the plant toward sunlight.
“They all seemingly do different things, so I’m trying to figure out what influences phototropism,” Nittler said. “We only know what happens after mutating six of the 33, so we’re working to better understand them. Some of them might not have functions, though.”
Nittler, however, directs his attention to just part of the family.
“I work with the three most closely related,” Nittler said. “One of those has a known function and the other two don’t.”
Meaning that two of the three are recognized as genes, but what happens when you mutate them is uncertain. While figuring out what mutations cause is important, Nittler has his attention elsewhere.
In order to better understand the genes, Nittler is attempting to learn the 3D structures of the protein’s middle section.
“We’ve had issues experimentally getting it to work,” Nittler said. “The main thing I want to find out from the 3D structure is why Nonphototropic Hypocotyl 3 is involved in phototropism while its close gene family members aren’t.”
Even though it hasn’t worked out just yet, Nittler continues to try new things in hopes of finding the solution.
“I like the challenge,” Nittler said. “Science doesn’t work a lot of the time, but when it does it’s really exciting.”
“#IAmScience because I am constantly learning and questioning. We try to understand life in order to improve it, but every answer brings on new questions and new areas to advance.”
If you walked into Ashten Kimble’s apartment, you’d notice immediately that it’s filled with plants. While some plant biologists refrain from caring for plants on their days off, the graduate student embraces being surrounded by life.
As a part of Walter Gassmann’s Lab in Bond LSC, Kimble is able to analyze the inner workings of plants, too. Her dissertation is about understanding the relationship between a plant’s defense mechanisms and proteins from pathogens like viruses, bacteria and fungi.
“The plant tries to stop the pathogen from invading it, but to do that it has to recognize proteins the pathogen sends inside it,” Kimble said. “I’m trying to see if it’s enough for the plant to recognize half of a pathogen protein and still be able to stop it.”
If a plant is unable to stop the invasion, its fate is sealed.
“The pathogen infects the plant leaf by leaf until it shuts down,” Kimble said.
Specifically, Kimble works with Arabidopsis — a model that is believed to have applicable characteristics to other plants. That means the impact of her findings can be great.
“If the plant can recognize the pathogen protein, I want to know what part of the plant’s DNA that occurs in,” Kimble said. “If I can identify a region [of the plant where it occurs], that information could translate to other plants.”
Doing so could lead to a significant shift in food safety; however, plant diseases are constantly changing.
“We have to think of things in an evolutionary scale,” Kimble said. “I’m working on a specific gene, but in the future what we know about it could change and be very different.”
That would put a wrench in her findings, but the ever-changing nature of plant pathogens serves as a point of excitement for Kimble.
“It keeps things interesting,” Kimble said. “From a science perspective, it’s a good thing. It’s something new to explore.”
The variety in her day-to-day experiences in the lab mirrors why Kimble pursued an education in plants in the first place. She worked in agriculture and was entranced by everything plants are capable of.
“I like the variety of things I can do with plants, whether it’s in the field, a greenhouse or the lab,” Kimble said.
After graduation in Summer 2019, Kimble hopes to enter the industry side of science. She wants to encourage others, especially those who wouldn’t consider themselves science-savvy, to better understand what exists at the root of research.
“I think it’s important for people to be curious and question what they’re told,” Kimble said. “If people seek out knowledge first hand, rather than just go off what they are told, they have better information to make decisions.”
“#IAmScience because I have learned to think critically and approach scientific unknowns in a way that will prepare me for a career as a successful physician.”
Labs aren’t born in a day. Neither are researchers.
Braden Zink, a senior biology major, could tell story after story about just that. He came to Mizzou with little knowledge of university research but with the determination to get his feet wet. As a member of Ruthie Angelovici’s lab, he did both.
“I came to college completely unaware of how research worked and the kinds of problems that research scientists work to solve,” Zink said. “I joined Dr. Angelovici’s lab during her first year as an MU professor and was thrilled to have the opportunity to help get it off the ground.”
With the lab’s goal of improving sustainability and nutritional quality of seeds, Zink has been able to make great strides in plant sciences. His current project is focused on how the size of seeds relate to their metabolic profiles.
“I had to come up with a way to measure Arabidopsis seeds because they’re the size of salt grains,” Zink said. “I came up with a protocol and performed size analysis on hundreds of ecotypes. My ultimate goal is to identify a gene or several that explain the observed variation in seed size.”
Last summer, Zink took advantage of working as a full-time researcher at Bond LSC.
“My work this past summer led to the conclusion that there’s a significant negative correlation between seed size and the quantity of several amino acids,” Zink said. “In general, I discovered that bigger seeds have proportionally less amino acids.”
This information led him to a working hypothesis that metabolic adjustments other than amino acids must be responsible for seed size variation.
Zink was able to work all summer solely on his research in Bond LSC thanks to the Cherng Summer Scholars grant funded by the founders of Panda Express, who happen to be Mizzou alumni. As one of 12 recipients — making it the most competitive grant for undergraduates — Zink’s dedication to his craft was recognized in a big way.
“I was able to focus intensely on my research and was immersed in it. Over the summer I didn’t have obligations to course work, so I was really able to be all in,” Zink said. “I believe what I’ve accomplished in research will help to set me apart from other candidates as I apply to medical school this year.”
He took his findings from the summer and presented as part of the Missouri EPSCoR program, which is run by the National Science Foundation (NSF) to provide more financial resources to scientifically underfunded states.
“I presented the poster as one of around 80 Missouri scholars,” Zink said. “Included in the presenters were students at all levels below professor, so it really highlighted what up-and-coming scientists are doing.”
After the event in late August, Zink was one of 10 presenters chosen to move forward and share their work in front of a national committee of NSF scientists. As the only undergraduate student selected from the state, it was an exciting opportunity.
“It was a closed room presentation with scientists whose work I’ve been reading for a while asking me questions about my science, so it was nerve-wracking,” Zink said. “While intimidating, this was also an incredible opportunity for my work to undergo an acid-test. Having my project hold water while being evaluated by nationally recognized scientists was an experience that confirmed that the work I’m doing is both professional and meaningful.”
While his accomplishments as an undergraduate researcher speak for themselves, Zink’s next step is medical school.
“Ideally, I want to become a cardiologist,” Zink said. “I’ve shadowed Dr. Greg Flaker — a seasoned cardiologist and head of cardiac research at the University of Missouri Hospital — and the work is something I could see myself doing in my professional career. I see this as an opportunity to offer critically ill patients 10 or 15 more years of life. It is a force that drives me towards joining this field.”
Zink plans to incorporate the lessons he’s learned at Bond LSC on his path to becoming a cardiologist.
“I’ll be doing a lot of the same style of critical thinking I do now,” Zink said. “Research has helped me do things that most undergraduates don’t get to. It helps you get ahead of the ball.”
Although there are more discoveries to be made, Zink is happy to contribute what he can to get things moving in the right direction.
“I understand that the contributions I’ve made — and continue to make — will only be a drop in a massive bucket,” Zink said. “However, each drop in this bucket is necessary if it is ever to be filled.”
Computer scientists create applications to speed up research in the lab
By Samantha Kummerer, Bond LSC
Three years ago, Ke Gao stood uncomfortably beside rows of biomedical students and plant scientists at the Bond Life Sciences research fair. His poster wasn’t discussing the DNA of seeds or how plants transport nutrients but rather a scientific device.
“At the beginning, the visitors didn’t understand what we were presenting, but once I explained how our application can help them accelerate their research and how we can really turn their phones into a research device, they got really excited,” Gao explained.
Gao’s presentation highlighted a mobile app that transforms images of seeds into objective, quantitative data.
It started with a simple problem. Plant scientists were manually comparing hundreds and in some cases thousands, of seed photos. The process was meticulous, slow and subjective.
The solution began with a collaboration with Michele Warmund (Plant Sciences), Tommi White (MU Electron Microscopy Core) and Filiz Bunyak (Computer Science) that led to a MU Interdisciplinary Innovations Fund grant.
Gao was part of this team that developed an algorithm to turn the photos of seeds from the field into data with the touch of the button.
Gao explained the app is very similar to Instagram.
A user takes or uploads photos of seeds. Then the app calculates measurements describing shape, color and size characteristics of the seeds. This data can be emailed or stored in a database.
Some experiments need thousands of seeds analyzed; this would be a massive feat for even a group of students. With this app, hundreds of seeds can be photographed and measured from a single photo. The app analyzes each seed individually and also computes measurement averages for groups of seeds.
There are other apps that analyze seeds, but this is the first mobile application as far as the team knows. Its ability to analyze multiple seeds at once, even if they are touching is also an outstanding ability. Bunyak’s previous experience developing applications to quantify microscopy images and videos of touching and clumping cells helped them design the algorithm to make that function possible.
This isn’t just a problem for researchers in this one lab or even at the University of Missouri.
MU Computer Science professor, Filiz Bunyak, said noninvasive methods to observe and understand biology, imaging equipment and corresponding computing devices have advanced considerably in recent years, leading scientists to produce large amounts of data. The ability for researchers to analyze and quantify this large amount of complex and unstructured data, however, was still missing. Bunyak said this app began as a project to advance scientists’ capabilities to automatically analyze image-based plant phenotyping.
Further collaboration
Bunyak and her students are advancing the field of high-throughput phenotyping beyond this mobile app.
High-throughput phenotyping (HTP) refers to the process of connecting an organism’s DNA makeup to its physical characteristics; it is also a hot topic buzzing through the science community in the last five years.
Two years ago, Bond LSC scientist David Mendoza, who studies how plants collect nutrients, said he never imagined he would be doing HTP.
“The old way of doing this is growing plants on plates and, I’m not kidding, with a ruler you measure how long the roots are,” Mendoza explained of the traditional process that now seems archaic.
Now, the lab is working with computer scientists to design a robot to code the measurements for multiple roots at a single time. For a student, it would take 15 minutes, but now it’s complete in an instant.
Speed isn’t the only reward researchers are reaping.
Bunyak said computational image analysis allows researchers to come up with new ways to quantify and study data that they were not even able to do before, leading to the design of novel experimental methods.
Ruthie Angelovici is another Bond LSC researcher who uses computer scientists to aid in her research.
She said without computer imaging there would be no way for her team to do research that measures plants physical and biochemical traits. Angelovici’s lab uses Bunyak’s mobile app system but on a computer. Eight plants are photographed at once and the application keeps track of features of plants such as shape, color and area as they develop.
What is really revolutionary to Angelovici is the ability for the data of plant growth parameters to be stored and revisited without the need to re-grow. This contrasts with past experiments where researchers would scribble some notes and never be able to return.
“It’s not lost and I think that’s a big step in this field,” Angelovici said.
The collaboration is creating more than advanced tools by fostering a new way to think and approach research.
Rather than buying pre-existing software, the groups from Bond LSC utilizes the resources on campus to build their own devices.
“I would have been in front of a black box that is doing things for me and that would not have given me the tools to teach to my students,” Mendoza reflected. “Now I know what they need to learn to be competitive. Now I know what the gaps are and how they can be filled. I think that was worth it.”
Mendoza’s team publishes all the instruction to its robot online, so the technology can aid other labs in making faster discoveries at a lower price.
Angelovici compared it to buying a cake versus making a cake — at the end of the creation process, she said she would have the knowledge to do a lot of other experiments.
This new way of thinking already began to pay off this summer when her lab expanded computer software to analyze seed size.
“We only approached it because we saw how things worked together. I just pitched a project to engineering about seed collector. Again, this opened my eyes that even undergraduates can do something not so difficult for engineers, but I have no clue how to do it,” Angelovici said.
Mendoza agreed the collaboration is exciting but challenging, “You got a Ph.D. and you got a faculty position and you think you know stuff. When I started this I realized how much I don’t know, but at the same time it reminded me that it is really cool to learn something new.”
Both teams continue to work towards maximizing the functions of their individual machines, but even after the projects reach fruition the collaboration will not be over.
“On the contrary, I think we’re going to keep building more and more and better,” Mendoza said.
Nowadays, Gao no longer feels out of place at the Life Sciences fairs. Researchers from various labs come up to him and ask how they can implement his app in their own lab.
“It seems like I’m doing something that can really help people, so that’s the best part of this process,” he said.
Ruthie Angelovici is an assistant professor in the Division of Biological Sciences and is a researcher at Bond Life Sciences Center. She received her degrees in plant science from institutions in Israel — her B.S. and M.S. from Tel Aviv University, and her Ph.D. from the Weizmann Institute of Science in Rehovot. She was a postdoctoral fellow at the Weizmann Institute and at Michigan State University and has been at MU since fall of 2015.
David Mendoza is an associate professor in Plant Sciences, Life Sciences Center investigator and a member of the Interdisciplinary Plant Group. His research focuses on the mechanisms plants use to resist toxic elements or acquire nutrients. He received his Ph.D. in biochemistry from UNAM in Mexico City and continued on to do post-doc training at UC San Diego.
Filiz Bunyak is an assistant research professor in the Department of Computer Science. She received her bachelors and masters degree from Istanbul Technical University and her Ph.D. from the University of Missouri- Rolla. Her work focuses on computer imaging, image processing, and biomedical image analysis.
Ke Gao is a doctoral student in the University of Missouri’s Department of Electrical Engineering and Computer Science. He earned his bachelor’s of science from the Henan University of Science and Technology in China.
“#IAmScience because I want to help unravel the mysteries of nature that will improve our futures and positively impact our planet.”
Katelynn Koskie didn’t always know she loved plants. As an undergraduate, she focused on what was above her rather than what grew below her.
“I was really interested in how galaxies interact and then I started to think, ‘you know I’ve always thought plants were really, really cool,’ and I wanted something that was a little bit more down to earth,” she said.
While she was pursuing a degree in astrophysics, she took one plant biology course and fell in love. From there she signed up for grad school and has been with plants ever since.
Koskie works with a mutated plant called hyper phototrophic hypocotyl, hph. The mutation is a variation of the lab’s model plant Arabidopsis. This variation is special. It produces more seeds, bends more under light and is stronger. It’s up to Koskie to figure out why.
That answer could have a large impact on the agriculture industry. If Koskie’s findings can be applied to crop plants like maize, farmers can grow better crops.
“Maize is more complicated than Arabidopsis, but with new techniques like CRISPR/CAS9 now it might make it a little bit easier,” she said.
She plants genetically modified seeds and then waits and observes and begins again.
It is a lot of time in the growth chamber and in the dark room, hoping the research may reveal a breakthrough.
“#IAmScience because it’s fun. You’re paid to work with exotic materials and instruments to solve problems that drive at how life manifests.”
Samuel McInturf’s father is an accountant and his mother is an HR director, but somehow he ended up falling in love with science. By the 4th grade he had already asked his parents to buy him a compound microscope. He completed his undergraduate degree in plant biology at University of Nebraska, Lincoln with a minor in biochemistry. Now, he’s finishing up his fifth year pursuing a Ph.D in plant stress biology and works in Dr. David Mendoza-Cózatl’s lab at Bond LSC.
“I mainly came to Bond LSC to work with Dr. Mendoza,” said McInturf. “The work in his lab was right in line with what I wanted to do and I knew the faculty at Bond LSC was great.”
And he’s enjoyed the last five years he’s spent here.
“Bond LSC has vast resources of knowledge and labs are very friendly towards one another,” he said. “So if you are short up on a reagent, or you need to learn to do an assay, someone is always available to lend a hand.”
McInturf’s thesis deals with understanding the genetic factors that balance the uptake and demand for micronutrients – heavy metals – against their toxicity. He specifically looks are regulators of iron and zinc homeostasis.
In addition to his interest in plant biology, he’s also an engineer of sorts. McInturf helps teach a bioengineering class at Bond LSC with undergraduates. The goal of the class is to build robotics that aid laboratory research, and he has taught three of these classes so far.
“I found the change in scale between building widgets in my bedroom to building full scale devices challenging, but ultimately rewarding,” he said.
For undergraduates interested in continuing a career in science, McInturf advises them not to give up, even when things get tough. He admits that he was intent on dropping out of school up until he was 18, but now he’s almost finished with his Ph.D.
“Ten years ago I was very intimidated by what I saw as the difficulty of science and was wavering on whether I wanted to take the dive into a research-heavy field,” he said. “It took a few years to figure that out, so I guess I would have told myself to get a move on and not be so faint hearted about it.”
McInturf isn’t positive where he’s like to be in 10 years, but he’d enjoy continuing to teach and conduct research at a university like MU.
“I’d love to have Dr. Mendoza’s job one day,” he laughed.
“#IAmScience because I believe that the collective pursuit of scientific knowledge is what moves us forward as a species.”
In the time leading up to Christopher Garner’s dissertation defense, you never would have known if he was nervous. He was confident and composed, and the conference room at Bond LSC was completely filled with his professors, friends and well-wishers. Dr. Walter Gassmann gave a complimentary introduction to the dissertation, saying, “I don’t know if I’ve ever seen a student so prepared.” Needless to say, Garner passed with flying colors.
Garner completed his undergraduate degree at the University of Missouri, St. Louis. After graduating, he went to work on a small R & D team at a St. Louis company. That was his first experience with research and his mentor was influential in persuading Garner to go to graduate school. During graduate school at MU, Garner worked in Gassmann’s lab at Bond LSC, researching the inner workings of the plant immune system. His favorite part of working in the lab was constantly conducting new experiments.
“It’s really satisfying to make a prediction and then see it come true,” said Garner. “It can be equally exciting to see things are radically different than what you predicted.”
His dissertation – “Should I slay or should I grow? Transcriptional repression in the plant innate immune system” – focused on the tradeoffs between growth and defense that plants face when mounting an immune response. While the immune response is essential for the survival of plants in the face of pathogen infection, expression of defense-related genes can interfere with growth and development and must therefore be kept under tight control. His research identified a protein involved in preventing an overshoot of the immune system after it has been activated, thereby contributing new information to the field.
“If there is some way in which I can contribute to the pursuit of scientific knowledge, be it through research or teaching others about science, then I feel like I have done something worthwhile,” said Garner.
How bossy insects make submissive plants create curious growths
By Samantha Kummerer | Bond LSC
They are bumps on leaves, bulges in stems and almost flower-like growths from plant tissue with a striking amount of variety. They are galls.
These unnatural growths garnered the curiosity of Jack Schulz for years. While he’s spent 40 years studying topics from Insect elicitors to habitat specialization by plants in Amazonian forests, what he’s really wanted to study was galls.
“It’s so weird,” said Schultz, director of the Bond Life Sciences Center. “I’ve always been really curious about how these strange structures form on plants.”
Schultz has spent the last two years trying to answer that question, looking at their development and the underlying genetic changes that make galls possible.
He’s not alone in his fascination.
“I found my very first gall when I was a masters student,” said Melanie Body, a postdoctoral researcher in Schultz’s lab. “I was really excited because it was here the whole time, I just didn’t see it. One of my teachers showed me and it was like a revelation, basically, what I wanted to work on.”
These “strange structures” are often mistaken for fruit or flower buds on a variety of plants from oak trees to grapevines and there’s a good reason why…
“A gall on a plant is actually, at least partly, a flower or a fruit in the wrong place,” Schultz said.
These galls can be the size of a baseball or the size of a small bump depending on the plant. They can also range from just small green bumps on the undersides of leaves to vivid complex growths of color.
Despite the variety, the one thing consist across plants is that the gall is not there by the plant’s choice.
“The insect has a pretty good strategy because it starts feeding on the plant and it will create a kind of huge structure, huge organ, where it can live in, so it’s making it’s own house,” Body said.
The reasoning behind the formation is relatively unknown, however, it is hypothesized that the insect flips a switch within the plant. The insect is not injecting anything new, but rather turning off and on certain genes within the plant.
Schultz explained the galling insect has the power to changes the expression of genes and in some instance disorient the plant’s determination of what is up from down.
The Problem
So how does this affect the plant?
Not only is the insect creating the gall against the plant’s nature, it is also using the plant’s energy and materials for the job.
“I think it’s very cool to imagine an insect can hijack the plant pathway to use it for its own advantage,” Body said.
The insect receives protection and a unique food source and in turn, the plant is left with fewer resources.
“From the plant’s point of view that’s all materials that could have gone into growth and reproduction, so you can think of these galling insects as competing with the plant they’re on for the goodies the plant needs to grow and reproduce,” Schultz explained. “That’s not so good for producing grapes.”
Grapevines are just one of the many plants that galls can form on, but also the plant Schultz’s research uses.
“In our case we work on grapes, so it can be a big issue if the fruits are not sweet enough anymore, because if you don’t have sugar in the fruit then it’s not good enough for the wine production, so it’s pretty important,” Body explained.
In Missouri, the story of grapevines and galls goes back to the 1800’s.
The story goes, the phylloxera insect found its way over to France. Soon it spread throughout the country; wiping out vineyard after vineyard.
“The great wine blight and the world was going to lose all wine production because of this pest,” said Schultz.
Luckily, a small discovery in native Missouri grapevines led to a solution that allowed wine drinkers to rejoice and scientists to puzzle.
“There’s something about the genes in Missouri grapevines that protects them against this insect,” Schultz explained.
While the European wine industry faced extinction, the phylloxera insect, coexisted with native Missouri grapevines. So, now every grapevine in a vineyard is grafted with insect-resistant roots from Missouri grapes.
But, no one really understands what’s so special about grapevine roots in Missouri.
The research
These galls aren’t new. They’ve actually existed for up to 120 million years. But, here’s what is:
“When we started this research, we thought this is a really well-studied insect,” Schultz said. “It turns out there is an awful lot we don’t know about them.”
The team collects samples of galls from grapevines at Les Bourgeois. Back in the lab the galls are dissected using very small tools and then examined with a microscope. Under the microscope, a colony of the insects emerges. The otherwise miniscule mother insect and her 200 eggs can be seen alongside other insects just moving around the gall.
Body compares the insects’ round textured bodies to oranges but with two black eyes.
Schultz’s team hypothesized that there are specific flower or fruit forming genes that are necessary for the insect to create a gall.
To answer this, the team looks at which genes are turned on when the insect creates the formation of a gall. Those observations by themselves don’t prove which genes are essential. So, next, the researchers manipulate the genes by changing the gene’s expression.
“If we find that Gene A is always on when the insect causes a gall to form, we can stop the expression of Gene A to test the hypothesis that it needs gene A to get the gall to form,” Schultz explained. “We can ask a plant. If you lack Gene A, can our insects still form galls?”
The researchers are still analyzing the results, but the current findings suggest that some genes do reduce the insect’s ability to make a gall.
Since beginning the research two years ago, Schultz said he has discovered, “all kinds of crazy things”.
Schultz said it was previously believed that the insect was staying in one place when making the circular gall, but actually, the little insect is moving around; something no one realized before.
And that’s not the only myth this research is debunking. For example, many believe there is one insect per gall, but this turns out to be incorrect. The gall can actually become a hospital of sorts where many mother insects flock to move in and lay their eggs.
And although galls sounds like an odd area of study, the research actually falls under basic developmental biology.
Schultz said research on galls could lead to discoveries about flowering and fruiting.
“Finding a situation in which flower or fruit structures are forming in odd places is actually suggesting to us, pathways and signals that are probably not as well studied in developmental – normal flowers and fruits,” Schultz said.
Beyond curiosity, one of the reasons to study the galls is to find a way to reduce the number of pesticides used on grapevines. The small size of the galling-insect causes grape growers to spray a lot of chemicals.
There’s a lot of discoveries, a lot of implications, but also still a lot of unknowns. Schultz doesn’t let that discourage him.
“If we knew everything about all kinds of things in nature, I’d be out of business and we’d have nothing to do,” Schultz reassured.
The curiosity behind the research continues to hold true for both Schultz and Body outside the lab. From collecting galls for each other to photographing the mysterious spheres, the two are always on the look out for the hidden work of the tiny insect.
Researchers in the Mendoza-Cozatl lab grow beans in a soil that simulates Martian soil
By Eleanor C. Hasenbeck | Bond Life Sciences
As NASA works to send people to Mars, researchers at the Mendoza-Cozatl lab at Bond Life Sciences Center are exploring the possibility of sending beans to the red planet. The journey from Earth to Mars alone would take somewhere between 100 to 300 days. To feed astronauts on these longer missions, scientists are studying space horticulture.
Norma Castro, a research associate in the lab, studies how common beans grow in a soil that simulates Mars’ red soil. The common bean is a good candidate for interstellar cultivation. Beans are a very nutritious crop, and their affinity for nitrogen-fixing bacteria can improve soil health while requiring less fertilizer. Castro is trying to understand how different varieties of beans could grow in the soil.
“This kind of research not only will tell us the right plants to take to Mars, but also which kind of technology needs to be developed,” Castro said.
“#IAmScience because I want to discover. I want to ‘see’ – by understanding – things that others haven’t ‘seen’ before.”
Every day we make decisions based off on what we encounter in the environment. Plants do the same thing. Scott Peck, a Chicago-area native, is a biochemist who studies how plants translate information they receive about the environment (such as changes in light and temperature) into their own chemical “decisions”, also known as signal transduction. For him, it’s about making biology into a puzzle. Put the right pieces together, and you find ways to create more resistant crops or more effective antibiotics. With today’s technology and Peck’s passion for plant communication, anything could be possible.