women in STEM

Women Power At Bond LSC

Melissa Mitchum, D Cornelison and Cheryl Rosenfeld

Melissa Mitchum, D Cornelison and Cheryl Rosenfeld (from left to right) of Bond Life Sciences Center were promoted to full professor on September 1, 2017.

Three Promoted to Full Professor

By MJ Rogers, Bond LSC

Scientific success largely hinges on research results, and four recent promotions at Bond Life Sciences Center celebrate that achievement.

DSC_3917.jpg

Laurie Erb

Cheryl Rosenfeld, D Cornelison and Melissa Mitchum of Bond Life Sciences Center were promoted to full professor as of September 1, while Laurie Erb received a promotion as a non-tenure-track research professor. They are the first female full professors in Bond LSC’s 13-year history.

University of Missouri’s Assistant Vice Chancellor of the Division of Inclusion, Diversity and Equity, Noor Azizan-Gardner, said the promotions made her optimistic.

“Three women all going up to full professor – it’s phenomenal,” she said. “And the fact that they all have labs in Bond LSC makes me deliriously happy. Not just for us and them, but for the women who will be the next generation. The ripple effect is bigger than just the three of them.”

Promotion and tenure at MU follows rigorous guidelines that take teaching, research success and service into account to advance professors through three tiers — from assistant to associate to full professorship — over more than a decade.

But like many technical fields, science lags behind in its proportion of women to men. Growing that diversity is important to the breadth of scientific inquiry. As an advocate of collaboration, the promotion of three women to full professor at Bond LSC hopes to reinforce that diversity.

Cornelison and Mitchum were quick to stress their promotions had nothing to do with their gender, and everything to do with their science.

“It just doesn’t cross my mind,” Mitchum said. “I honestly don’t walk around thinking about gender. I just do the best I can and that’s all I can do.”

Similarly, Cornelison said, “I am not a female scientist. I am a scientist. Period. It should not be a part of the story.”

Rosenfeld, however, is concerned that administrators are not giving women the support necessary to flourish in their careers.

“I work seven days a week and I deserve respect and to be taken seriously on par with my male colleagues,” she said. “I am not doing this as a hobby. This is my passion, and, hopefully in the future, women like myself will be treated equally.”

A Pervasive Problem

A study conducted in 2015 by the Chancellor’s Status of Women Committee and the Status of Women Committee in the College of Arts and Science at MU found that with regard to gender equity on campus, there was no evidence of a systematic pay bias against female faculty. However, it did find that the average salary for female faculty is almost $16,000 (or 15 percent) below the average salary for male faculty and that the colleges with the highest average salaries were predominantly male.

Cornelison, Mitchum and Rosenfeld all believe that female scientists at MU face at least three significant hurdles on their path to full professor: the amount of time it takes compared to their male colleagues, the lack of mentorship, and the high ratio of male full professors compared to female full professors in several departments.

Mitchum stated that there are only two other female full professors — Jeanne Mihail and Michelle Warmund — in the plant sciences department compared to at least 17 males. Rosenfeld and Cornelison had similar ratios in their respective departments.

Recent controversies indicate gender equity is a persistent challenge in the field as a whole.

In 2015, a study published by the American Psychological Association found that when considering requests from prospective students seeking mentoring in the future, the science faculty at research-intensive universities were more likely to hire a male lab manager, mentor him, pay him more and rate him as more competent than a female candidate with the exact same resume. And this year, two senior female scientists sued the prestigious Salk Institute for Biological Studies, alleging pervasive gender discrimination and systematic sexism.

Although female scientists remain underrepresented in many countries, academic journal publisher Elsevier released a report in 2017 that shows improvement. It stated that women’s scholarly authorship increased overall from 30 percent in the late 1990s to 40 percent two decades later. In terms of raw proportions, the percentage of women scientists in the U.S. increased from 31 percent from 1996-2000 to 40 percent from 2011-2015.

Beginning Inspiration

Rosenfeld, Cornelison and Mitchum’s success in the departments of Biomedical Sciences, Biological Sciences and Plant Sciences, respectively, follow several decades of hard work and passion in their fields.

But their interest in science started in unique ways.

“In middle and high school I was always excited about science classes,” said Mitchum. “I liked physics. I liked chemistry. I was lucky to have a science teacher, Patty Gustin, who knew I had an interest in science, saw some potential and encouraged me. She was actually the first person to encourage me to go on to college in science.”

Mitchum went on to get an undergraduate degree in biology at the University of Puget Sound in Tacoma, Washington. She immediately continued her education and received her masters in plant pathology at the University of Nebraska, Lincoln and her Ph.D. in plant pathology and biotechnology at North Carolina State University in Raleigh.

Cheryl Rosenfeld’s high school biology teacher, Patricia Murphy, was also the first person to put her on the science track.

“I can still picture her to this day,” Rosenfeld said, smiling. “She gave me a C on my first lab assignment. My friend received a better grade and we did the same work, so I asked her why I got such a low grade. She told me that I was going to be a scientist, that she expected more of me, and to improve my grade she allowed me to help prep the lab experiments.”

Rosenfeld went on to receive a bachelor of science and DVM (Doctor of Veterinary Medicine) from the University of Illinois at Urbana-Champaign and a Ph.D. in Animal Sciences and Reproductive Biology from MU.

Cornelison’s path was a bit different. Like many undergraduate scientists, she initially thought she would go to medical school. But during an independent study, she was assigned to a lab doing behavior genetics in mice and fell in love with research.

“Unlike my experience in Chemistry classes, I was now in an environment where I was expected to go and do things nobody had ever done before,” Cornelison said. “And I got to tell people about it. And I got to decide what the next unknown thing I wanted to know was. After that, I had to decide whether to apply to medical school or graduate school because I only had enough money to take the GRE or the MCAT, so I took the GRE. And I am still incredibly grateful for the people who took me into their lab and taught me to science.

Cornelison credits that experience with why she enjoys having undergraduates in her lab. To date, over 20 of them have graduated with departmental honors based on their independent research projects.

“If I can give students a taste of what that experience of discovery feels like, I’m happy. It changes your perspective on many things,” she said.

The concept of mentorship is something Rosenfeld, Cornelison and Mitchum all agree is critical for budding scientists, male or female.

Each shared stories about the vast amount of mentors that inspired them and students they still keep in contact with. Mitchum has an especially meaningful relationship with one of her mentors.

“While I was working in a lab as an undergraduate I had the opportunity to interact with a visiting scientist who would work in our lab, Donald Foard, an older gentleman at the time, and he became my mentor,” Mitchum said fondly. “I don’t think I would be where I am today without his mentorship. As an undergraduate, he encouraged me. He believed in me. He inspired me to go to graduate school. And we still keep in contact today. He is 86 years old now and we still write letters back and forth. I recently had the privilege of sending him my promotion letter. The sheer excitement of sharing that promotion with him was incredibly meaningful.”

“Without him believing in me I don’t think I would be sitting here talking to you about this promotion today,” she added. “He believed in me during a time when I didn’t believe in myself.”

Supporting Women in STEM

In an effort to promote mentorship and address female-specific concerns in the STEM fields, such as wage negotiation and salary differences, MU recently started its first Women in STEM group. The group was spearheaded by Rosenfeld and Azizan-Gardner, and had its first meeting in July.

“The issue of mentoring is something that you see everywhere, not just here,” said Azizan-Gardner. “It is a pervasive problem we need to address. And we can do that here at MU and do something that will really benefit everyone.”

Female mentorship is something that Rosenfeld believes is critical for female scientists and she makes an effort to mentor female undergraduate and graduate students.

“When you’re struggling, you often think that there is no way you can do this,” said Rosenfeld. “But if you see someone that looks like you that has succeeded and is teaching you, all the sudden your goal does not seem impossible.”

Mitchum is another strong proponent of mentorship and undergraduate research. She has mentored 26 undergraduate researchers in her lab, and 12 of them went on to graduate school, while many of the rest went to medical school.

“It’s so important for us as mentors, female or male, to believe in and encourage the younger generation,” she said. “I believe in many cases, you just need someone to believe in you and know you can accomplish things. It’s important to have quality in mentorship — investing in students and giving students your time and direct attention.”

Rosenfeld hopes that the Women in STEM group will empower female scientists to be more assertive. She said the first meeting was “eye opening” because many of the participants had similar experiences and it was powerful to hear their frustrations. About 20 women attended the first meeting, and Rosenfeld is confident that number will increase.

Azizan-Gardner believes that Bond LSC has the potential to be a leader in promoting, recruiting and retaining female scientists. And as a result, will encourage more women to go into STEM fields.

“I hope having a strong Women in STEM group will be great recruitment as well for other general faculty to come to MU,” said Azizan-Gardner. “At least that’s my goal, and that’s the area I’m responsible for. And on top of that, I think it will really entice other undergraduate women to go into STEM.”

Translating soybean cyst nematode research

Roger Meissen/Bond Life Sciences Center -  These soybean roots show some nematode cysts. The small, white circles are the hardened body of the nematodes and form when the nematode attaches itself to the root to create a feeding cell.

Roger Meissen/Bond Life Sciences Center – These soybean roots show some nematode cysts. The small, white circles are the hardened body of the nematodes and form when the nematode attaches itself to the root to create a feeding cell.

Beneath a North Carolina field in 1954, a tiny worm inched its way through the soil and butted against a soybean root. The worm pierced the plant, slipped inside and inserted a needle-like appendage into a cell. It pumped a mixture of proteins into the root cell and waited for the potent blend to take effect on the unsuspecting soybean.

Since the first detection of soybean cyst nematode (SCN) in the US, the worm Heterodera glycines has spread to about 80 percent of American soybean fields. In Missouri, SCN attacks soybeans in almost every county and causes decreased yields even in robust, healthy-looking fields. Nationwide, SCN wreaks havoc to the tune of $1.2 billion per year, making it by far the most costly soybean pest.

Despite the hefty toll, farmers still depend on the same small handful of resistant soybean varieties to combat SCN that they have used for years. But those natural defenses are becoming less effective as nematodes evolve.

“More than 90 percent of the soybean cultivars that farmers plant derive their resistance from a single source,” said Melissa Mitchum, a plant nematologist at the University of Missouri Bond Life Sciences Center and Division of Plant Sciences faculty member in the College of Agriculture, Food and Natural Resources. “Consequently, this has led to widespread virulence in the pathogen population, thereby reducing the effectiveness of those resistant cultivars.”

But in the past 10 years, researchers studying SCN have made numerous breakthroughs, unlocking the secrets of the nematode and exploring how the worm interacts with host plants. Now, scientists are poised to bring that knowledge from the laboratory to the field.

Found in translation

Relatively little was known about SCN a decade ago.

Scientists could determine the type of nematode in a soil sample and had just figured out the cocktail of proteins a nematode pumps into the soy root cell that transform it into a syncytium, or feeding cell.

Working in part with funding from commodity boards and farmer checkoff dollars, researchers around the country made breakthrough after breakthrough, deepening our understanding of SCN and equipping scientists with new tools to fight the pest.

That money helped scientists sequence the soybean genome, draft a SCN genome and pinpoint important soy and SCN genes.

Checkoff investments continued to pay dividends in 2012 when Mitchum and colleagues cloned the first gene linked to natural soybean cyst nematode resistance. This breakthrough is one key step in moving science from the laboratory into the field. With a SCN resistance gene in hand, new avenues for creating soybean varieties that fight off the nematode are opening up.

But other areas of research also hold promise in the struggle against soybean cyst nematode’s parasitic ways.

Mitchum’s group also identified the plant receptors that recognize and respond to the blend of proteins an attacking nematode inserts into a plant. In a recent project published in Plant Biotechnology Journal, Xiaoli Guo, a postdoctoral fellow in Mitchum’s lab demonstrated that silencing those receptors in soybean roots helped the plant resist SCN.

This work has implications for more crops than just soybeans: Working with collaborator Xiaohong Wang at Cornell, Mitchum’s group used their understanding of plant receptors to develop a potato resistant to potato cyst nematode.

A roadmap for discovery

To build on the momentum of recent research, experts drafted a roadmap for the next decade of nematode research. Their goal, Mitchum said, is to address the challenge of translating these research breakthroughs into something tangible for the farmer.

With support from state farmer run organizations such as the Missouri Soybean Merchandising Council, the North Central Soybean Research Program and the United Soybean Board, researchers are formulating teams that “bring together commodity, industry and university funding to develop collaborative, interdisciplinary, multistate projects,” said Mitchum.

And there’s plenty of scientific firepower to advance research: MU’s College of Agriculture, Food and Natural Resources alone has more than 90 faculty studying plant science, plant genetics and other areas of agriculture-related science.

The scientists’ plan for the next 10 years involves a blend of molecular research, plant breeding, population biology and outreach. Researchers will focus on refining the existing draft SCN genome, which will help to develop a quick, inexpensive test for HG type and eventually contribute to understanding of how SCN overcomes a plant’s resistance. They’ll create an “atlas” of SCN genes researchers can use to block the pest. Updating yield loss estimates and mapping SCN distribution will also give scientists a better idea of the nematode’s national impact. Other efforts will allow breeders to incorporate new sources of resistance into commercially-available varieties, refine the use of non-host species to control SCN and develop a pipeline for creating and testing transgenic SCN-resistant soybeans. Finally, videos, webinars and training modules will help scientists, students and producers take advantage of new discoveries and techniques.

Roger Meissen/Bond Life Sciences Center -  Michael Gardner, Ph.D. student, Melissa Mitchum, associate professor of Plant Sciences, Xiaoli Guo, post doctoral fellow, conduct research at the University of Missouri. They investigate how soybean cyst nematode overcomes soybean resistance to identify novel approaches for management.

Roger Meissen/Bond Life Sciences Center – Michael Gardner, Ph.D. student, Melissa Mitchum, associate professor of Plant Sciences, Xiaoli Guo, post doctoral fellow, conduct research at the University of Missouri. They investigate how soybean cyst nematode overcomes soybean resistance to identify novel approaches for management.

Onward with research

A thorough understanding of SCN resistance and virulence starts with basic research and then moves into the field. “We all need to come together to transfer this knowledge to the breeder,” Mitchum said, “and from there it gets out to the farmer.”

 Her lab recently received a National Science Foundation grant to continue their work on soybean protein receptors. Specific targeting of the receptors is just one potential strategy for producing new kinds of SCN-resistant plants. A second grant, from the National Institute of Food and Agriculture, will allow the lab to continue refining their understanding of how SCN proteins overcome a host plant’s defenses. To that end, Mitchum’s graduate student Michael Gardner is identifying the genetic blueprint of the different SCN types present in Missouri fields.

“If we better understand nematode populations and what makes those populations distinct, we can better advise farmers confronted with virulent nematodes,” Gardner said. “We’ll be able to go one step beyond the HG type test and understand how nematodes are able to adapt in the long term, not just the next growing season.”

But these breakthroughs do little good unless they then become useful tools for breeders and ultimately farmers. To that end, Mitchum and other researchers will help breeders use research results to produce soybeans with durable resistance. They‘ll also develop guides so farmers can easily incorporate new technologies and management strategies into their farms.

It’s important for farmers, breeders and researchers to take a unified approach to fighting SCN, Mitchum said, because a tactic that seems successful at first could backfire.

For instance, combining resistance genes in a single soybean variety could actually be harmful. “When we deploy it in the field, we select for nematodes that can overcome multiple types of resistance,” Mitchum said.

A better approach might be to perfect varieties with distinctive resistance mechanisms and insure durable resistance by rotating among the resistant varieties and non-host crops.

“It’s similar to taking antibiotics,” Mitchum said. “Improper use and overuse selects for resistance.” The strategic planning document should help everyone working with soybeans and SCN leverage and build upon new knowledge.

Despite all the research and recent breakthroughs, there remains only one certainty in the ongoing arms race between soybeans and SCN: “It is highly unlikely that we will eradicate it.” Mitchum said, “We’re going to have to find new strategies to protect and bolster soybean yields.”

Thanks to the efforts of researchers such as Mitchum, in the future SCN might be a little easier to get along with.

 

 

Roger Meissen/Bond Life Sciences Center - Research specialist and coordinator for the Plant Nematology Lab Amanda Howland processes soil samples for nematodes. Howland replaced Bob Heinz earlier this year.

Roger Meissen/Bond Life Sciences Center – Research specialist and coordinator for the Plant Nematology Lab Amanda Howland processes soil samples for nematodes. Howland replaced Bob Heinz earlier this year.

University of Missouri Plant Nematology Laboratory: An extensive legacy

Bob Heinz spent his last day at work in December surrounded by nematodes. Heinz served as Mitchum’s research specialist and coordinator of the Plant Nematology Laboratory, where he processed soil samples, responded to growers and assisted researchers. After 35 years on the job, he’s retired, and Amanda Howland is now filling his shoes. The scientists and farmers who’ve worked with Bob over the decades thank him for his dedication and wish him luck in his retirement. And Amanda: Welcome aboard.

The Plant Nematology Lab, housed within Mitchum’s lab at MU, represents a successful model for how research, teaching and extension program integration can promote interdisciplinary collaboration. Such an approach helps maintain an effective pipeline that brings research-based information and resources from MU to Missourians. The lab offers an array of tests that help farmers understand and manage nematode populations. The available tests include:

Vermiform Nematode Identification: Soybean Cyst? Root Knot? Lesion? Find out what kinds of nematodes are in your fields with this test.

Soybean Cyst Nematode Egg Count: This procedure provides an estimate of the number of SCN eggs in your field.

Soybean Cyst Nematode HG Type Test: Different types of SCN have overcome various sources of soybean resistance. A HG type test will help you determine the best source of resistance for the particular type of SCN in your field.

For more information, go to http://soilplantlab.missouri.edu/nematode/ or contact the Lab.
Phone: 573-884-9118
Email: nematodelab@missouri.edu