Life Sciences Week

Hanson to explain why broken metabolites matter at Life Sciences Week

By Jinghong Chen | Bond Life Sciences Center

Andrew Hanson, right, will speak Friday, April 14 in Bond LSC's Monsanto Auditorium as the 2017 Dr. Charles W Gehrke speaker. | Photo by University of Florida, Institute of Food and Agricultural Sciences

Andrew Hanson, right, will speak Friday, April 14 in Bond LSC’s Monsanto Auditorium as the 2017 Dr. Charles W Gehrke speaker. | Photo by University of Florida, Institute of Food and Agricultural Sciences

People often think of metabolism as a perfect network. But that assumption is simply not accurate.

Andrew Hanson, an eminent scholar and professor at the University of Florida, describes the misunderstanding as “the power of a paradigm.” American biochemist Albert Lehninger spread the misunderstanding in his classic textbook “Biochemistry”, in which the message he communicated to generations of students was: metabolism is a beautiful machine that functions flawlessly.

Hanson challenges this “metabolism is perfect” paradigm using illustrations from different kinds of organisms in his lecture. He will speak in Bond LSC’s Monsanto Auditorium at 1 p.m. Friday April 14, during the 33rd annual Missouri Life Sciences Week.

For every living organism, metabolism is the sum of every chemical reaction that occurs to maintain life. This sum contains all the metabolites — small molecules created at each level of cell processes and final products — that share a part in the growth, development, reproduction and running of cells and whole organisms.

However, enzymes can make mistakes; many chemical compounds in cells are unstable and undergo spontaneous reactions. The consequences of enzyme errors and chemical side-reactions are, at best, unwanted and sometimes toxic, so organisms have developed mechanisms – damage-control systems – to deal with the consequences of damage.

Hanson’s lab has studied metabolite damage and the damage-control systems that plants and microorganisms employ to cope. But the impact of metabolic problems also reaches into the human domain, causing disease from failure or mutation of damage repair enzymes. “It matters in aging humans and animals a great deal, because aging is the result of cumulative damage,” Hanson said.

Plants are also afflicted by metabolite damage. Under environmental stress such as high temperature or water loss, the error rate of enzymes and rates of unwanted chemical reactions can go up.

The understanding of metabolite damage could also advance metabolic engineering, which is a purposeful manipulation by combining metabolic pathways and DNA techniques to produce desired products. After creating new pathways in an organism, it may fail to cope with the abnormal reactions produced by the new pathways. To fix the problem, the only solution might be to install the required damage control enzymes.

Hanson’s lab hopes to identify new or unsuspected damage reactions, and enzymes that repair or prevent damage. They also are working to connect with metabolic engineering groups that install modified pathways in plants and microbes to study sources of damage and propose solutions.

Metabolism is not perfect. However, after studying its imperfection for years, Hanson concluded, “life is put together in a very beautiful and even more powerful way than we first realize. It makes a lot of mistakes, but it also fixes them so well that we do not even notice them.”

Hanson’s lecture on “Fixing or safely trashing broken metabolites and why it matters” is this year’s Charles W. Gehrke distinguished lecture. Gehrke, a longtime MU professor of Biochemistry, was selected by NASA to analyze rocks retrieved from the first moon landing for any traces of extraterrestrial life. He died in 2009.

Hanson’s lecture is free and open to the public as part of Missouri Life Sciences Week. It occurs at 1:00 on Friday, April 14 in Bond LSC’s Monsanto Auditorium. See more about events during the week at bondlsc.missouri.edu/life-sciences-week.

Unlocking plants’ metabolic thermostat — award-winning LSW posters

Unlocking plants’ metabolic thermostat — award-winning LSW posters

Matthew Salie would like to see chubbier plants.

“You’ve probably never really seen a fat plant before, right?” said Salie, a fourth year MU graduate student in biochemistry­. “Humans, we make plenty of extra fat and store that as energy. But plants don’t really need to do that — they make just as much as they need, and that’s about it.”

Salie studies plant metabolism with Bond LSC researcher Jay Thelen, an associate professor of biochemistry. He’s one of 25 winners honored for research presented during Missouri Life Sciences Week 2015.

The Thelen lab looks for ways to increase the amount of vegetable oil that crops such as corn and soybean can produce. Salie focused on an enzyme that is the first step in the pathway to producing fatty acid in plants.

The idea was that if he could reduce metabolic limits at the beginning of the process, then the downstream production of oil would increase.

“I found these new proteins that no one has ever really studied before,” Salie said. “As I started to look into them over the last year or two, it turns out that they actually seem to incorporate themselves into the enzyme and slow down it’s activity.”

Four separate proteins normally combine to form the functional enzyme, but the new proteins Salie identified mimic those components and can take their place, like a cuckoo bird replacing another species’ eggs with its own. The more mimics that replace proteins, the fewer functional enzymes the plant produces, which means less oil.

It’s a simple, nuanced way for the plant to fine-tune the production of fatty acids.

“Instead of being an on-off switch, it’s more like a thermostat,” Salie said. And if he can adjust that thermostat in a plant, it should start packing on the pounds.

Although Salies work was only recently submitted for publication, it’s already receiving recognition. His poster, “The BADC proteins — a novel paradigm for regulation of de novo fatty acid synthesis in plants,” won first place in the Molecular and Cellular Biology category during the Life Sciences Week poster competition in April.

Salie relished the opportunity to share his findings with researchers and non-scientists alike.

“It’s a great experience, because it helps you realize what’s really important about the work that your doing,” he said. “It also really encourages you to work harder. It’s like, ‘Wow, this is actually meaningful stuff!’ which can be hard to see when you’re working 60 or 70 hour weeks at the lab, just sitting there by yourself.”

Salie was among more than 300 students who presented their research during the 31st annual Life Sciences Week poster sessions.

 

The winners in each of the five categories are:

  • Molecular and Cellular Biology
    • Matthew Salie, Matthew Muller, Stephanie Bowers
  • Organismal Biology
    • Miqdad Dhariwala, Ryan Sheldon, Carine Collins
  • Genetics, Evolution and Environment
    • Julianna Jenkins, Nathan Harness, and a tie for third between Sharon Kuo and Susheel Bhanu Busi
  • Life Science and Biomedical Engineering Technologies and Informatics
    • Jamie Hibbard, Hang Xu, Brittany Hagenhoff
  • Social and Behavioral Sciences
    • Vaness Cox and Ian George tied for first place

Undergraduate winners are Vincent Farinella, James Mrkvicka, Anette van Swaay, Romanus Hutchins, Dallas Pineda, Kelsey Boschert, Anthony Onuzuruike, Clare Diester, Adam Kidwell and Sean Rogers.

Honorable mention:

  • Social and Behavioral Sciences
    • Undergrad Honorable Mention – Kelsey Clark
    • Undergrad Honorable Mention – Louie Markovits
  • Genetics, Evolution, and Environment
    • Grad Honorable Mentions: Megan Murphy (Schul) and Amanda Smolinsky (Holliday)
    • Undergrad Honorable mention: Anthony Spates (Holliday)
  • Organismal Biology
    • Grad Honorable Mention: Kathleen Pennington
    • Grad Honorable Mention: Kasun Kodippili
    • Grad Honorable Mention: Christopher Tracy
    • Undergrad Honorable mention: Chelsie Todd
    • Undergrad Honorable mention: Holly Doerr
    • Undergrad Honorable mention: Zeina Zeida
  • Molecular and Cellular Biology
    • Grad Honorable mention, Khalid Alam [Burke lab]
    • Grad Honorable mention, Zhe Li [Sarafianos lab]
    • Undergrad Honorable mention: Vincent Markovitz [Guo lab]

Additional prizes were awarded for communication prowess and poster design chops.

For photos of some of this year’s winner, check out this Flickr album

Life Sciences Week preview: Doing more with less

Gehrke 2015 flyerA simple virtue lies at the heart of Xuemin (Sam) Wang’s research: thrift.

“A good way to think of it is how to increase output without demanding more inputs,” Wang said.

Wang, the E. Desmond Lee and Family Fund endowed professor at the University of Missouri-St. Louis and a principal investigator at the Donald Danforth Plant Science Center, studies plant membrane lipids. His lab is focused on understanding the relationship between oil production and plant stresses such as drought and nutrient deficiency.

Wang will speak during the 31st annual Missouri Life Sciences Week, a yearly celebration of MU’s research and an exploration of public policy, entrepreneurship and science outreach.

Wang’s lab uses Arabidopsis, the lab mouse of the plant world, as a discovery tool but also works with crops such as soybean and the Camelina species. Camelina was widely grown in Europe before it was supplanted by canola, but Wang and others are working to develop Camelina as a productive oil crop.

The lab studies how lipids — the fatty acids that make up cell membranes — help regulate cell function. For example, they’re trying to figure out how a cell senses water and nutrients and then “determines whether it should grow faster or store more lipid or carbohydrates,” Wang said.

By understanding those processes, future research might develop plants that do more with less. That could mean less water and chemical fertilizer needed for the same or greater yield. Wang pointed to reliance on fertilizers as a major problem.

“Not only does it drive up agriculture production costs, but there can be major environmental consequences.”

Ultimately, Wang’s research could improve plant oil and biomass production while decreasing our dependence on fertilizers and abundant water.

Wang’s presentation on “Lipids as Molecular Switches in plant stress signaling and metabolic integration” constitutes this year’s Charles W. Gehrke distinguished lecture. Gehrke, a MU professor of Biochemistry who died in 2009, was instrumental in advancing the field of chromatography and helped analyze rock samples retrieved from the moon during the Apollo 11 mission. Gehrke grew up in poverty during the great depression and worked in melon fields during his youth before studying at Ohio State University.

Missouri Life Sciences Week is an annual event. In addition to Wang’s talk, this year’s line-up will also focus on HIV and emerging diseases and highlight more than 300 undergraduate and graduate research projects at its poster sessions.

Check out the full schedule of events here.